Machine Learning Approach for Early Detection of Plant and Fish Diseases
Dewi Syahidah
Research Centre for Veterinary Science, National Research and Innovation Agency of Indonesia (BRIN), Indonesia
Corresponding Author:dewi050@brin.go.id
Bernadetta Rina Hastilestari
Research Centre for Genetic Engineering, BRIN, Indonesia
Corresponding Author:dewi.syahidah@my.jcu.edu.au
Abstract :
The information technologies currently used in plant and fish farming are largely based on equipment and mechanism, image processing, and pattern acknowledgement, computerized modelling, geographical information systems, expert systems (Pakar), data supervision, artificial intelligence (AI), decision maker devices, and care centres or links. The use of advanced technologies eases the prediction and prevention of parasite infestation and other disease outbreaks. The food productivity of the food sources, including plants and fish, is limited by diseases. The early detection of the disease’s infection by naked eyes is somehow difficult. Therefore, early detection through different image processing tools has been introduced widely. Due to the increasing number of reported paper on the potential use of data quarrying and types of machine learning (ML) for plant and fish disease prediction, this chapter consolidates and presents scientific information on the application of data mining and ML in both types of diseases and discussed how imaging technology can be applied to study the diseases and the method in the detection, with comprehensions on the different encounters and prospects. In addition, the potential application of ML in terms of plant and fish disease discoveries in Indonesia are put forward.
Keywords:
- Agriculture,
- Aquaculture,
- Data mining,
- Fish diseases,
- Image Processing,
- Machine Learning Pakar,
- Deep Belief Network (DBN)
Reference
[1] R. Anyoha,” The history of artificial intelligence (AI). Blog, special edition of artificial intelligence,” 2017. [Online]. Available: https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence.
[2] C. Puttamadappa and B.D. Parameshachari, “Demand side management of small scale loads in a smart grid using glow-worm swarm optimization technique,” Microprocessors Microsystems, vol 71, pp. 102886, 2019.
[3] R.P., Shaikh, and S.A. Dhole, “Citrus Leaf Unhealthy Region Detection by using Image Pro- cessing Technique, in: IEEE International Conference on Electronics,” Communication and Aerospace Technology, pp. 420–423, 2017.
[4] D.L. Vu, T.K. Nguyen, T.V. Nguyen, T.N. Nguyen, F. Massacci, and P.H. Phung, “HIT4Mal: hybrid image transformation for malware classification,” Transportation Emerging Telecommunication Technology, vol. 31, no. 11, pp. e3789, 2020.
[5] K. Yu, L. Lin, M. Alazab, L. Tan, and B. Gu,”Deep learning-based traffic safety solution for a mixture of autonomous and manual vehicles in a 5G-enabled intelligent transportation system,” IEEE Trans. Intelligence & Transportation Systems, vol, 22, no. 7, pp. 4337–4347, 2020.
[6] R. Loh, 2013. Fish Pathology, 4th edn Edited by Ronald J Roberts. Wiley Blackwell, Oxford. 597pp.
[7] E. Gavin,” Discusses about machine learning: an introduction,” 2018. [Online]. Available: https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0.
[8] D. Gupta, A. Julka, S. Jain, T. Aggarwal, A. Khanna, N. Arunkumar, and N.V.C. De Albuquerque,”Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease,”Cognition System Research, 52: 36e48, 2018, doi : 10.11648/j.sjac.20190704.12.
[9] A. Bayata. “Review on nutritional value of cassava for use as a staple food”. Sci J Anal Chem, Vol.7, No. 4, pp.83-91, Sep. 2019. doi: : 10.11648/j.sjac.20190704.12.
[10] S.H. Susilowati. “Fenomena penuaan petani dan berkurangnya tenaga kerja muda serta implikasinya bagi kebijakan pembangunan pertanian”. Forum Penelitian Agro Ekonomi, Vol.34, No.1, pp.35-55, Jul. 2016.
[11] I.S. Dewi, I.H. Somantri, D. Damayanti, A. Apriana and T.J. Santoso. Evaluasi tanaman padi transgenik Balitbio terhadap hama penggerek batang. Laporan Hasil Penelitian Balitbio, Bogor, pp. 141 – 150, Nov. 2002, http://repository.pertanian.go.id/handle/123456789/12199.
[12] B.R. Hastilestari, C.F. Pantouw, S. Nugroho and A. Estiati. “ Uji ketahanan padi transgenik mengandung gen Cry 1B dibawah kontrol promoter terinduksi pelukaan Mpi terhadap hama penggerek batang kuning (Scirpophaga Incertula WK.) pada fase vegetatif”. Prosiding Seminar Nasional 2013 : Inovasi Teknologi Padi Adaptif Perubahan Iklim Global Mendukung Surplus 10 Juta Ton Beras 2014. Balai Penelitian dan Pengembangan Pertanian Kementerian Pertanian, pp. 215 – 223, Jul. 2014.
[13] H.Tyagi, S. Rajasubramaniam, M.V. Rajam, and I. Dasgupta, “RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants”. Transgenic Res., Vol. 17, No.5, pp.897-904, Feb. 2008, doi: 10.1007/s11248-008-9174-7.
[14] O.Azzam, and T.C. Chancellor, “The biology, epidemiology, and management of rice tungro disease in Asia”. Plant Dis., Vol. 86, No.2, pp. 88-100, Feb,2007, doi : 10.1094/PDIS.2002.86.2.88.
[15] B.R.Hastilestari, D. Astuti, A. Estiati and S. Nugroho, “Sequence analysis of ORF IV RTBV isolated from tungro infected Oryza sativa L. cv Ciherang”. AIP Conference Proceedings, Vol. 1677, No. 1, p, 090013, Sep, 2015. https://doi.org/10.1063/1.4930758.
[16] X. Wang, et al., “Current advances on genetic resistance to rice blast disease”. In Rice-Germplasm, genetics and improvement, 2014, pp.195-217. InTech, Rijeka, Croatia.
[17] S. Zahrah, R. Saptono, and E. Suryani, “Identifikasi Gejala Penyakit Padi Menggunakan Operasi Morfologi Citra”. In Seminar Nasional Ilmu Komputer (SNIK 2016)-Semarang , Vol. 10, Oct, 2016 .
[18] R, Olivia, et al. “Broad-spectrum resistance to bacterial blight in rice using genome editing”. Nat biotechnol, Vol. 37, No. 11, pp.1344-1350, Oct, 2019.
[19] M.M.Faizal Azizi and H.Y, Lau, “Advanced diagnostic approaches developed for the global menace of rice diseases: a review.” Canadian Journal of Plant Pathology, Vol. 44, No.5, pp 627 – 651, Mar 2022, doi: 10.1080/07060661.2022.2053588.
[20] R. Moordiani, A. Wildani and S. Widayani, S. “Analisis Kebutuhan Penyuluh Pertanian Mendukung Jawa Tengah Menjadi Lumbung Pangan Nasional”. In Prosiding Seminar Nasional Fakultas Pertanian UNS Vol. 2, No. 1, pp. C53 – C60, 2018.
[21] L. Owens,” Diseases,” in Aquaculture. Farming Aquatic Animals and Plants. J.S. Lucas, J.S. and P.C. Southgate, Eds., Blackwell Publishing. 2015, pp. 199-214.
[22] M. Sharma, A.B. Shrivastav, Y.P. Sahni, Y.P., and G. Pandey,”Overviews of the treatment and control of common fish diseases. International Research,” J. of Pharmacy, vol. 3, no. 7, pp. 123-127. 2012 [Online] Available: www.irjponline.com.
[23] World Health Organization (WHO). 2004. Waterborne Zoonosis: Identification, Causes and Control. World Health Organization, Geneva.
[24] J.F. Bernardetn, A.C. Campbell, J.A. Buswell,”Flexibacter maritimus is the agent of 'black patch necrosis' in Dover sole in Scotland,” Dis. in Aquat. Org, vol. 8, pp. 233-237. 1990.
[25] F. Pazos, Y. Santos, A.R. Macías, S. Núñez, and A.E. Toranzo, “Evaluation of media for the successful culture of Flexibacter maritimus,” J. of Fish Dis., vol.19, pp. 193-197. 1996.
[26] J.M. Shewan and T.A. McMeekin,”Taxonomy and ecology of the Flavobacterium and related genera,” Ann. Rev. in Micr. vol. 37, pp. 233-252. 1983
[27] S.W. Pyle and E.SupB. Shotts, “A new approach for differentiating flexibacteria isolated from cold water and warm water fish,” Can. Jour. of Fish and Aquat. Sci., vol. 37, pp. 1040-1042.1980.
[28] J.M. Bertolini and J.S. Rohovec,”Electrophoretic detection of proteases from different Flavobacterium columnare strains and assessment of their variability,”Dis. in Aquat. Org., vol. 12, pp. 121-128. 1992.
[29] M.F. Chen, D. Henry-Ford, and J.M. Groff,” Isolation and characterization of Flexibacter maritimus from marine fishes of California,” J. of Aquat. Anim. Health, vol. 7, pp. 318- 326. 1995.
[30] J.A. Plumb,” Health maintenance and principle microbial diseases of cultured fishes,” Iowa State University Press. Ames, Iowa. 344 pp. 1999.
[31] I. Altinok and I. Kurt,” Molecular Diagnosis of Fish Diseases: a Review,” Turkish J. of Fish. and Aquat. Sci., vol. 3, pp. 131-138. 2003.
[32] S.Bartels, et al., “ MAP Kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis,” The Plant Cell, Vol. 21, No.9, pp. 2884-2897, Sep. 2009. doi : 10.1105/tpc.109.067678.
[33] T.Boller and G. Felix, “A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors,” Ann Rev Plant Biol, Vol.60, pp.379 – 406. 2009, doi : 10.1146/annurev.arplant.57.032905.105346.
[34] X.Meng and S. Zhang, “MAPK cascades in plant disease resistance signaling,” Annu Rev Phytopathol, Vol.51, No.1, pp. 245-266, May. 2013, doi : 10.1146/annurev-phyto-082712-102314.
[35] Y.Fang, and R.P. Ramasamy, “Current and prospective methods for plant disease detection”, Biosensors, Vol. 5, No.3, pp. 537-561, Aug. 2015, doi : 103390/bios5030537.
[36] A. Zhang, E. Jakku, R. Llewellyn, and E.A. Bake, “Surveying the needs and drivers for digital agriculture in Australia,” Farm Policy J, Vol.15, No,1, pp. 25-39, 2018.
[37] K.Thongboonnak, and S. Sarapirome, “Integration of Artificial Neural Network And Geographic Information System For Agricultural Yield Prediction,” Suranaree J. Sci.Technol, Vol.18, No.1, pp. 71-80, Jan, 2011.
[38] A.K.Rumpf, et al., “Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance,” Comput Electron Agric, Vol.74, No.1, pp. 91–99. Oct..2010, doi : 10.1016/j.compag.2010.06.009
[39] J. Schuster. “Big data ethics and the digital age of agriculture,” Resource Magazine, Vol.24, No.1, pp. 20-21, 2017.
[40] M. Hijri. “The use of Fluorescent in situ hybridisation in plant fungal identification and genotyping,” In Plant Pathology, pp. 131-145. Humana Press, Totowa, NJ.
[41] A. Kliot, et al., “Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues,” J. Vis. Exp, Vol. 84, p. e51030, Feb. 2014, doi : 10.3791/51030.
[42] V.A.J. Kempf, K. Trebesius and I.B. Autenrieth 2000. “Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures,” Am Soc Microbiol, Vol. 38, No. 2, pp. 830–838, Feb. 2000, doi : 10.1128/JCM.38.2.830-838.2000.
[43] E.F. DeLong, G.S. Wickham, and N.R. Pace. “Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells,” Science, Vol. 243, No. 4896, pp. 1360–1363, Mar. 1989, doi: 10.1126/science.2466341.
[44] M.F. Clark, and A.N. Adams. “Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses,” .J Gen Virol, Vol. 34, pp. 475–483, Mar.1977, doi : 10.1099/0022-1317-34-3-475.
[45] M.M. López, et al., “Strategies for improving serological and molecular detection of plant pathogenic bacteria,” In : De Boer, S.H. (eds) Plant Pathogenic Bacteria, Springer, Dordrecht, pp. 83–86, 2001, doi : 10.1007/978-94-010-0003-1_15.
[46] P. Baldi, and N. La Porta, “Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry,” Front Plant Sci, Vol. 11, p.570862, Oct. 2020, doi : 10.3389/fpls.2020.570862.
[47] F. Martinelli, et al., “Advanced methods of plant disease detection. A review,” Agron Sustain Dev, Vol. 35, pp. 1-25, Sep.2014, doi: 10.1007/s13593-014-0246-1.
[48] I. S. Fotiou, P.G. Pappi, K.E, Efthimiou, N.I. Katis, and V.I. Maliogka, “Development of one-tube real-time RT-qPCR for the universal detection andquantification of Plum pox virus (PPV),” J Virol. Methods, Vol.263, pp. 10–13, Oct.2018, doi : 10.1016/j.viromet.2018.10.006.
[49] X. Zhong, L. Xue-lu, L. Bing-hai, Z. Chang-yong, and W. Xue-feng, “Development of a sensitive and reliable droplet digital PCR assay for the detection of’ Candidatus Liberibacter asiaticus,” .J. Integr. Agric., Vol.17, No.2, pp. 483–487, 2018, doi : 10.1016/S2095-3119(17)61815-X.
[50] J.A.Tomlinson, et al. “On-site DNA extraction and real-time PCR for detection of Phytophthora ramorumin the field,” Appl. Environ. Microbiol., Vol. 71, pp. 6702–6710, Nov. 2005, doi : 10.1128/AEM.71.11.6702-6710.2005.
[51] T.M. Voegel, and L.M. Nelson, “Quantification of Agrobacterium vitis from grapevine nursery stock and vineyard soil using droplet digital PCR,” Plant Dis., Vol. 102, No.11, pp. 2136-2141, Sep. 2018, doi : 10.1094/PDIS-02-18-0342-RE.
[52] S. Ramesh et al. “ Plant disease detection using machine learning,” 2018 International conference on design innovations for 3Cs compute communicate control (ICDI3C), pp. 41-45, IEEE, Apr. 2018.
[53] H.T. Sihotang, “Sistem pakar untuk mendiagnosa penyakit pada tanaman jagung dengan metode bayes,” Journal of Informatic Pelita Nusantara, Vol. 3, No. 1, pp. 17-22, 2018.
[54] A. Muchtar, D. Nur, E. Tungadi, and M.N.Y Utomo, “Perancangan Back-End Server Menggunakan Arsitektur Rest dan Platform Node. JS (Studi Kasus : Sistem Pendaftaran Ujian Masuk Politeknik Negeri Ujung Pandang), ” Seminar Nasional Teknik Elektro dan Informatika (SNTEI), pp. 72-77, Oct. 2020.
[55] S. Hossain, et al. “Recognition and detection of tea leaf's diseases using support vector machine,” In 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 150-154, IEEE, Mar. 2018.
[56] J. Chen, Q. Liu, and L. Gao, L, “Visual tea leaf disease recognition using a convolutional neural network model,” Symmetry, Vol. 11, No.3, p. 343, Mar.2019, doi : 10.3390/sym11030343.
[57] X.Sun, S. Mu, Y. Xu, Z. Cao, and T.Su. “Image recognition of tea leaf diseases based on convolutional neural network,” 2018 International Conference on Security, Pattern, Analysis, and Cybernetics (SPAC), 2018, pp. 304-309, doi : 10.1109/SPAC46244.2018.8965555.
[58] A.J. Rozaqi, A. Sunyoto, and M.R. Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creat. Inf. Technol. J., Volume 8, No.1, pp. 22-31, Mar. 2021, doi : 10.24076/citec.2021v8il.263.
[59] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” 2014, arXiv preprint arXiv:1404.5997. [Online]. Available https;//arxiv.org/abs/1404.5997.
[60] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating deep convolutional neural networks,” 2018, arXiv:1808.06866. [Online]. Available: http://arxiv.org/abs/1808.06866 .
[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015.
[62] G. Wang, Y, Sun, and J, Wang, “Automatic image-based plant disease severity estimation using deep learning”. Comput. Intell. Neurosci., Vol.2017, pp. 1–8, Jul. 2017, doi : 10.1155/2017/2917536.
[63] K.P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput Electron Agric, Vol. 145, pp. 311-318, Feb. 2018, doi: 10.1016/j.compag. 2018.01.009.
[64] A. Fuentes, D.H. Im, S. Yoon and D.S. Park “Spectral analysis of CNN for tomato disease identification,” In International Conference on Artificial Intelligence and Soft Computing, pp. 40 – 51, Springer, Cham, 2017.
[65] S.J. Divinely, K Sivakami, and V. Jayaraj,”Fish diseases identification and classification using machine learning,” Intl. J. Adv. Res. Bas. Eng. Sci.Tech. (IJARBEST), vol. 5, pp. 46–51. 2019.
[66] P. Jayanthi,” Machine learning and deep learning algorithms in disease prediction: future trends for the healthcare system,”In Deep Learning for Medical Application with Unique Data, pp. 123-152. 2022.
[67] V. Lyubchenko, R. Matarneh, O. Kobylin, and V. Lyashenko,”Digital image processing techniques for detection and diagnosis of fish diseases,” Intl. J. Of Adv. Res. in Com. Sci. and Soft. Eng., vol. 6, pp. 79–83. 2016.
[68] H. Chakravorty, P. Rituraj P., and P. Das,” Image Processing Technique to Detect Fish Disease,” Intl. J. of Com. Sci. and Sec. (IJCSS), vol. 9, no. 2, pp. 121-131. 2015.
[69] T.K. Malik, Shaveta, and A.K. Sahoo,”A novel approach to fish disease diagnostic system based on machine learning,” Adv. in Im. and Vid. Proc., vol. 5, no. 1, pp. 49–49. 2017.
[70] M. Alagappan and M. Kumaran, “Application of expert systems in fisheries sector – a review,” Res. J. Anim. Vet. Fish. Sci., vol. 1, no. 8,pp. 19–30. 2013.
[71] D. Li, Z. Fu, and Y. & Duan,” Fish-Expert: a web-based expert system for fish disease diagnosis,” Expert System Application, vol. 23, no. 3, pp. 311–320. 2022.
[72] M. Føre, K. Frank, T. Norton, E. Svendsen, J.A. Alfredsen, T. Dempster, H. Eguiraun, W. Watson, A. Stahl, L.M. Sunde, C. Schellewald, K.R. Skøien, M.O. Alver, and D. Berckmans,” Precision fish farming: a new framework to improve production in aquaculture,” Bios. Eng., vol. 173, pp. 176–193. 2018.
[73] M.S. Ahmed, T.T. Aurpa, and M.A.K. Azad,” Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture,” J. of King Saud Univ. – Com. and Inf. Sci. 2021. doi: https://doi.org/10.1016/j.jksuci.2021.05.003.
[74] D.Klauser “Challenges in monitoring and managing plant diseases in developing countries,” J Plant Dis Prot, Vol. 125, No.3, pp. 235-237, Jan. 2018, .doi :/10.1007/s41348-018-0145-9.
[75] M.Sharif,et al., “Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images,” J Exp. Theor. Artif. Intell, Vol. 33, No.4, pp.577-599, Feb, 2019, doi : 10.1080/0952813X.2019.1572657.
[76] K.Thenmozhi, And U.S. Reddy, “Crop pest classification based on deep convolutional neural network and transfer learning,” Comput. Electron. Agric, Vol.164, p.104906, Aug. 2019, doi : 10.1016/j.compag.2019.104906.
[77] S. Iqbal, M.U. Ghani, T.Saba, and A. Rehman, “Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN),”.Microsc. Res. Tech, Vol.81, No.4, pp. 419-427., Jan. 2018, doi : 10.1002/jemt.22994.
[78] A. Camargo, and J.S. Smith, “An image-processing based algorithm to automatically identify plant disease visual symptoms,” Biosyst. Eng, Vol. 102, No.1, pp.9-21. Jan.2009, doi : 10.1016/j.biosystemseng.2008.09.030.
[79] S.D.Khirade and A.B. Patil”Plant Disease Detection Using Image Processing,” 2015 International Conference on Computing Communication Control and Automation, 2015, pp. 768 -771, doi: 10.1109/ICCUBEA.2015.153.
[80] S. Kusrini,”Sistem pakar teori dan aplikasi,” Andi offset, Yogyakarta. 2006.
[81] W. Wang, M. Yang, M., and P.H. Seong,”Development of a rule-based diagnostic platform on an object-oriented expert system shell,” Annals of Nuc. En. vol. 88, pp. 252-264. 2016.
[82] R.R. Al Hakim, “Pencegahan Penularan Covid-19 Berbasis Aplikasi Android Sebagai Implementasi Kegiatan KKN Tematik Covid-19 di Sokanegara Purwokerto Banyumas,” Commun. Eng. and Emerg. J. (CEEJ), vol. 2, no.1, pp. 7–13. 2020.
[83] R.R. Al Hakim, E. Rusdi, E., and M.A. Setiawan,”Android based expert system application for diagnose covid-19 disease: cases study of banyumas regency,” J. of Intell. Com. & Health Inf., vol. 1. No.2, pp.1–13. 2020.
[84] S. Kusumadewi,”Artificial Intelegence (Teknik dan Aplikasinya),” Yogyakarta: Graha Ilmu. 2003.
[85] T.S. Saptadi and V.S. Sebukita,”Pengambilan keputusan dalam penerimaan karyawan bank dengan pendekatan terstruktur berbasis sistem pakar,” J. Tek. Kom. dan Inf., p. 81. 2012.
[86] G. Engin, B. Aksoyer, M. Avdagic, D. Bozanli, U. Hanay, d. Maden, and G. Ertek,”Rule-based expert systems for supporting university students,” Proc. Com. Sci., vol. 31, pp. 22-31. 2014. DOI: 10.1016/j.procs.2014.05.241.
[87] M. Arhami,”Konsep dasar sistem pakar,”Penerbit Andi. Yogyakarta. 205 p. 2004.
[88] I. Akil,”Analisa efektifitas metode forward chaining dan backward chaining pada sistem pakar,” J. Pilar Nusa Man., p. 13. 2017.
[89] A. Al-Ajlan, A.,” The comparison between forward and backward chaining. international journal of machine learning and computing, “5, 2nd ser. 2015
[90] D. Novaliendry, and C.H.Y. Yang,” The expert system application for diagnosing human vitamin deficiency through forward chaining method,” Inf. and Comm. Tech. Conv. (ICTC), pp. 53-58. 2015. DOI: 10.1109/ICTC.2015.7354493.
[91] I. M. Shofi, L.K. Wardhani, and G. Anisa, “ Android Application for Diagnosing General Symptoms of Disease Using Forward Chaining Method,” Cyber and IT Service Management, Bandung, Indonesia, 25-27 April. 2016. DOI: 10.1109/CITSM.2016.7577588.
[92] Elfani and A. Pujiyanta,” Sistem pakar mendiagnosa penyakit pada ikan konsumsi air tawar berbasis website. sistem pakar mendiagnosa penyakit pada ikan konsumsi air tawar berbasis website,” vol. 1, no. 1, pp. 42–50. 2013.
[93] T.H. Yunianto, “Sistem pakar diagnosa penyakit pada ikan hias,” pp. 17. 2013.
[94] David,” Sistem pakar diagnosa penyakit ikan lele dumbo. konferensi nasional sistem & informatika,” STMIK STIKOM Bali, 9 – 10 Oktober. 2015, pp. 107-112.
[95] M.N. Rachmatullah and I. Supriana,”Low Resolution Image Fish Classification Using Convolutional Neural Network 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA) pp 78-83. 2018.
[96] Z. Hakim and R. Rizky,”Sistem pakar diagnosis penyakit ikan mas menggunakan metode certainty factor di upt balai budidaya ikan air tawar dan hias kabupaten pandeglang banten,” J. Tek. Inf. Unis, vol. 7, no.2, pp.164–169. 2020.
[97] T.S. Dewi and R. Arnie,” Sistem Pakar Diagnosa Penyakit Ikan Patin Dengan Metode Certainty Factor Berbasis Web,” J. TIMES, vol. 6, no. 1, pp. 1311–1448. 2017.
[98] P.I. Hidayati,” Penerapan metode cf (certainty factor) pada diagnosa penyakit ikan nila,” Tekonologi Informasi, vol 8, no.2, pp. 127–134. 2017.
[99] S. Budi,” Kombinasi metode forward chaining dan certainty factor untuk mendiagnosa penyakit pada ikan cupang,” Tek-Sis. Inf. Unus. PGRI Kediri, vol. 1, no.1, pp. 1–6. 2017.
[100] Lestari,” Penerapan Metode Certainty Factor Pada Sistem Pakar Diagnosa Penyakit Ikan Gourami Berbasis Website (Studi kasus UPTD Balai Benih Kota Binjai),” Thesis. Universitas Pembangunan Panca Budi Medan, pp 77. 2019.
[101] R.R. Al Hakim, A. Pangestu, and A. Jaenul., A. 2021. Penerapan metode certainty factor dengan tingkat kepercayaan pada sistem pakar dalam mendiagnosis parasit pada ikan,” J. of Inf. Tech. Res., vol.2 no.1, pp. 27-37. 2021.