Biochemical and Physiological response of Brassica juncea and Nephrolepis exaltata in Mercury spiked soil

R.Suganthi

Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, 641003;

Corresponding Author: suganthi.tamilselvi@gmail.com

S.Avudainayagam

Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, 641003;

Corresponding Author: avudaicr@gmail.com

Abstract :

The current study sought to investigate the variations in the physiological functions such as Photosynthetic rate, Stomata conductance, Transpiration rate, Total Chlorophyll and the significant role of enzymatic and non-enzymatic antioxidants in eliminating the Reactive Oxygen Species (ROS) generated in response to varying concentration of mercury viz., 0 , 2.5, 5, 10 and 20 mg kg-1 in Indian mustard (Brassica juncea) and fern (Nephrolepis exaltata). Results revealed a 17.3 and 10.4 per cent reduction in chlorophyll content of Indian Mustard and Boston Fern between the 20 mg kg-1 treated plants and the control suggesting reduction in photosynthetic rate of the plant Albeit these parameters were affected, plants tolerated 20 mg kg-1 without any visual phytotoxicity symptoms. Gaseous parameters were inversely proportional to the mercury concentration whereas oxidative stress indicators and antioxidant enzymes exhibited a positive correlation. An average increase of 38 per cent Proline was observed in both plants. In B.juncea and N.exaltata, Average catalase activity and peroxidase activity ascended from 2.35 to 5.12 min-1 g-1 and 3.26 to 6.80 min-1 g-1, and 0.23 to 1.17 min-1 g-1 and 0.30 to 1.27 min-1 g-1, respectively which assures the phytoremediation potential of these plants in mercury contaminated soils.

Keywords:
  • Phytoremediation ,
  • Total Chlorophyll ,
  • Gaseous Exchange parameters ,
  • Oxidative stress ,
  • Enzymatic and Non-enzymatic Antioxidants ,
Reference

(1) Tangahu, B. V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N. and M. Mukhlisin. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J Chem. Engg.,2011: 939161.2011.

(2) Wang, M. C., Chen, Y.T., Chen, S.H., Chien, S.C. and S.V.Sunkara. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere.,87(3):217-25. 2012.

(3) Wang, K., Huang, H., Zhu, Z., Li, T., He, Z., Yang, X. and A. Alva. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int. J. Phytoremediation.,15(3):283-98.2013.

(4) Gao, J.J., Shen, X.F., Peng, R.H., Zhu, B., Xu, J., Han, HJ. And Q. H.Yao. Phytoremediation and phytosensing of chemical contaminant, toluene: identification of the required target genes. Mol. Biol. rep.,39(8):8159-67. 2012.

(5) Yang, D.Y., Chen, Y.W., Gunn, J.M. and N. Belzile. Selenium and mercury in organisms: interactions and mechanisms. Environ. Rev.,16:71-92. 2008.

(6) Boening,D.W. Ecological effects, transport, and fate of mercury: a general review. Chemosphere.,40(12):1335-51. 2000.

(7) Clarkson, T.W. and L. Magos. The toxicology of mercury and its chemical compounds. Crit. Rev. toxicol.,36(8):609-62. 2006.

(8) Su, Y., Han, F., Chen, J., Shiyab, S. and D. L. Monts. Phytotoxicity and phytoremediation potential of mercury in Indian mustard and two ferns with mercury contaminated water and oak ridge soil-9241. In the proceedings of InWM2009 Conference., pp. 1-5. 2009.

(9) Azevedo, R. and E. Rodriguez. Phytotoxicity of mercury in plants: a review. J. Bot.,pp:1-6. 2012.

(10) Puzon, J.J., Rivero, G.C. and J. E. Serrano. Antioxidant responses in the leaves of mercury-treated Eichhornia crassipes (Mart.) Solms. Environ. Monit. assess., 186(10):6889-901. 2014.

(11) Smolinska, B. and J. Leszczynska. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environ. Sci. Poll. Res.,24(15):13384-93. 2017.

(12) Kapoor, D., Kaur, S. and R. Bhardwaj. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed research international. 2014: 726070. 2014.

(13) Arora, A., Sairam, R. K. and G. C. Srivastava. Oxidative stress and antioxidative system in plants. Curr. sci., 25:1227-38. 2002.

(14) Rathore, S. S., Kapila, S., Premi, O.P. and B. K. Kandpal. Water use efficiency, productivity, photosynthesis and sustainability of pressurized irrigation systems for Indian mustard [Brassica juncea (L.) Czern and Coss.]under semi-arid conditions of Rajasthan. Res. Crop.,14(1):140-50. 2013.

(15) Rathore, S.S., Shekhawat, K., Dass, A., Kandpal, B. K. and V. K. Singh. Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proceedings of the National Academy of Sciences, India Section B: Biol. Sci.,89(2):419-27. 2019.

(16) Mahajan, P. and J. Kaushal. Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol..2018:4864365.2018.

(17) Hall, J. A. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental botany.,53(366):1-1. 2002.

(18) Mani, D., Sharma, B., Kumar, C. and S.Balak. Depth-wise distribution, mobility and naturally occurring glutathione based phytoaccumulation of cadmium and zinc in sewage-irrigated soil profiles. International Environ. Sci. Technol..,10(6):1167-80. 2013.

(19) Boominathan, R. and P. M. Doran. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol. bioengg.,83(2):158-67. 2003.

(20) Ma, J. F., Ueno, D., Zhao, F. J. and S. P.McGrath. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta.,220(5):731-6. 2005.

(21) Yadav, S. K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr. J bot.,76(2):167-79. 2010.

(22) Akomolafe, G. F., Dedeke, O. A. and S. A.Sirajo. Tolerance mechanisms in Pteridophytes (ferns) and their use as remediators of heavy metal contaminated sites. In Proceedings of 37th Annual Conference of Genetics Society of Nigeria., (pp. 20-29). 2013.

(23) Su, Y., Han, F.X., Chen, J., Sridhar, B.M. and D. L. Monts. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogonmonos peliensis), and Chinese brake fern (Pteris vittata). Int. J Phytoremediation., 10(6):547-60. 2008.

(24) Bates, L.S., Waldren, R.P. and I. D.Teare. Rapid determination of free proline for water-stress studies. Plant and soil.,39(1):205-7. 1973.

(25) Heath, R.L. and L. Packer. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.,125(1):189-98. 1968.

(26) Velikova, V., Yordanov, I. and A. Edreva. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant sci.,151(1):59-66. 2000.

(27) Aebi, H. Catalase. In: Bergmeyer, H.U., Ed., Methods of Enzymatic Analysis, VerlagChemie/Academic Press Inc., Weinheim/NewYork p.673-680. 1974.

(28) Kar, M. and D. Mishra. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiol.,57(2):315-9.1976 .

(29) Panse, V.G., and P.V. Sukhatme. Statistical methods for agricultural workers: ICAR, New Delhi. 1985.

(30) Chen, J. and Z. M. Yang. Mercury toxicity, molecular response and tolerance in higher plants. Biometals.,25(5):847-57. 2012.

(31) Zhang, F. Q., Wang, Y. S., Lou, Z. P. and J. D. Dong. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere.,67(1):44-50.2007.

(32) Malar, S., Vikram, S. S., Favas, P. J. and V.Perumal. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud..,55(1):1-1. 2016.

(33) Gill, S. S., Khan, N. A. and N. Tuteja. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci.,182:112-20. 2012.

(34) Janusaitiene, I. Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ. res. engg. manag.,53(3):24-9. 2010.

(35) Sanmartin, P., Villa, F., Silva, B., Cappitelli, F. and B. Prieto. Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments. Biodegradation.,22(4):763-71.2011.

(36) Gomes, M. P., Le Manach, S. G., Maccario, S., Labrecque, M., Lucotte, M. and P. Juneau. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. phys.,130:65-70. 2016.

(37) Mobin, M. and N. A. Khan. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol.,164(5):601-10. 2007.

(38) Parmar, P., Kumari, N. and V. Sharma. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud.,54(1):1-6. 2013.

(39) Asgher, M., Khan, M. I., Anjum, N. A. and N. A. Khan. Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma.,252(2):399-413. 2015.

(40) Sharma, P., Jha, A. B., Dubey, R.S. and M.Pessarakli. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. bot. 2012:217037. 2012.

(41) Gimenez, E., Salinas, M. and F.Manzano-Agugliaro. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability.,10(2):391. 2018.

(42) Hasanuzzaman, M., Bhuyan, M.H., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita,M. and V. Fotopoulos. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants.,9(8):681. 2020.

(43) Jiang, S.-Y., Z. Ma, and S. Ramachandran. 2010. "Evolutionary history and stress regulation of the lectin superfamily in higher plants." BMC evolutionary biology 10 (1):1-24.

(44) Chen, J., Shiyab, S., Han, F. X., Monts, D.L., Waggoner, C.A., Yang, Z. and Y. Su. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology.,18(1):110-21. 2009.

(45) Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., Su, Y. and M. A. Masad. Mercury‐induced oxidative stress in Indian mustard (Brassica juncea L.). Environ. Toxicol.: An International Journal., 24(5):462-71. 2009.

(46) Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. res.,52. 2019.

(47) Emamverdian, A., Ding, Y., Mokhberdoran, F. and Y.Xie. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015:756120. 2015.

(48) Raj, D., Kumar, A. and S. K.Maiti. Brassica juncea(L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int. J. phytoremediation.,22(7):733-44. 2020.

(49) Doganlar, Z. B., Cakmak, S. and T.Yanik. Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. Int. J. Biol.,4(3):148. 2012.

(50) Sofo, A., Scopa, A., Nuzzaci, M. and A.Vitti. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J Mol. Sci.,16(6):13561-78. 2015.

(51) Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. and M. N. Prasad. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta physiol. plantarum.,35(4):985-99. 2013.

(52) Kim, Y. H., Lee, H.S. and S. S. Kwak. Differential responses of sweetpotato peroxidases to heavy metals. Chemosphere.,81(1):79-85.2010.

(53) Sahu, G. K., Upadhyay, S. and B. B.Sahoo. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants.,18(1):21-31. 2012.

© The Author(s), under exclusive license to Technoarete Publishers 2022
About this Paper
Cite this paper

R.Suganthi, S.Avudainayagam. (2022). Biochemical and Physiological response of Brassica juncea and Nephrolepis exaltata in Mercury spiked soil. In: Dr Sunita Singh, Dr Mohammed Aurifullah, Dr. Peiman Kianmehr, Dr. Monica Dragomirescu, Smart Environmental Science Technology and Management. Lecture Notes on Environment Conservation and Enrichment, vol 1. Technoarete Publishers. doi.org/10.36647/978-93-92106-02-6.8

Publisher Name

Technoarete Publishers

ISBN

978-93-92106-02-6

DOI

doi.org/10.36647/978-93-92106-02-6.8

  • ISBN - 978-93-92106-02-6
  • Instant PDF download
  • Readable on all devices
  • Total No. of. Pages - 150
  • Available to everyone
  • Free Access
doi.org/10.36647/978-93-92106-02-6.8

Full
Paper