Effect of natural compounds to inhibit human respiratory syncytial virus

Authors : Debanjan Mitra 1 , Pradeep K. Das Mohapatra 1

Dept. of Microbiology, Raiganj University, India

Corresponding Author: pkdmvu@gmail.com

Abstract :

Current COVID-19 effects are forcing us to think about other deadly viral diseases. Respiratory syncytial virus (RSV) is one of them. Every year thousands of children lost their lives due to respiratory diseases which are occurred by this RSV. Nowadays, bioactive compounds show an enormous effect on many deadly diseases and show excellent therapeutic effects. In this study, we have identified five bioactive compounds from the plant which will be used in the treatment of RSV. Molecular docking on the protein was done by Autodock. Hydrogen was added and routable bonds were fixed in the preparation time of protein for docking. All those compounds show their non-toxic nature which is evaluated by Lipinski's Rule of Five. Molecular docking on RSV matrix protein and surface glycoprotein with those bioactive compounds shows very promising results. Between all those compounds Baicalein appears as a lead compound. It shows -8.1 Kcal/mol in the case of matrix protein and -7.9 kcal/mol in the case of the surface glycoprotein of RSV. Due to its availability and non-toxic nature, it can be used in the treatment of RSV. AS it is derived from plants, it also has very fewer side effects than chemical drugs.

Keywords:
  • Respiratory syncytial virus,
  • Molecular docking,
  • Lipinski Rule of Five,
  • Matrix protein,
  • Bioactive compounds
Reference

[1] Henrickson, K. J., Hoover, S., Kehl, K. S., & Hua, W. National disease burden of respiratory viruses detected in children by polymerase chain reaction. The Pediatric infectious disease journal, 23(1), S11-S18. 2004.

[2] Falsey, A. R., Hennessey, P. A., Formica, M. A., Cox, C., & Walsh, E. E. Respiratory syncytial virus infection in elderly and high-risk adults. New England Journal of Medicine, 352(17), 1749-1759. 2005.

[3] Falsey, A. R., & Walsh, E. E. Respiratory syncytial virus infection in adults. Clinical microbiology reviews, 13(3), 371-384. 2000.

[4] Nair, H., Nokes, D. J., Gessner, B. D., Dherani, M., Madhi, S. A., Singleton, R. J., & Campbell, H. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. The Lancet, 375(9725), 1545-1555. 2010.

[5] Zlateva, K. T., Vijgen, L., Dekeersmaeker, N., Naranjo, C., & Van Ranst, M. Subgroup prevalence and genotype circulation patterns of human respiratory syncytial virus in Belgium during ten successive epidemic seasons. Journal of clinical microbiology, 45(9), 3022-3030. 2007.

[6] White, L. J., Mandl, J. N., Gomes, M. G. M., Bodley-Tickell, A. T., Cane, P. A., Perez-Brena, P., & Medley, G. F. (2007). Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical biosciences, 209(1), 222-239.

[7] Meerhoff, T. J., Paget, J. W., Kimpen, J. L., & Schellevis, F. Variation of respiratory syncytial virus and the relation with meteorological factors in different winter seasons. The Pediatric infectious disease journal, 28(10), 860-866. 2009.

[8] Mufson, M. A., Örvell, C., Rafnar, B., & Norrby, E. Two distinct subtypes of human respiratory syncytial virus. Journal of General Virology, 66(10), 2111-2124. 1985.

[9] Anderson, L. J., Hierholzer, J. C., Tsou, C., Hendry, R. M., Fernie, B. F., Stone, Y., & McIntosh, K. Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. Journal of Infectious Diseases, 151(4), 626-633. 1985.

[10] Peret, T. C., Hall, C. B., Schnabel, K. C., Golub, J. A., & Anderson, L. J. Circulation patterns of genetically distinct group A and B strains of human respiratory syncytial virus in a community. Journal of General Virology, 79(9), 2221-2229. 1998.

[11] Feltes, T. F., Cabalka, A. K., Meissner, H. C., Piazza, F. M., Carlin, D. A., Top Jr, F. H., & Cardiac Synagis Study Group. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. The Journal of pediatrics, 143(4), 532-540. 2003.

[12] Cardenas, S., Auais, A., & Piedimonte, G. Palivizumab in the prophylaxis of respiratory syncytial virus infection. Expert review of anti-infective therapy, 3(5), 719-726. 2005.

[13] Mitra, D., & Mohapatra, P. K. D. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Applied Biochemistry and Biotechnology, 193(6), 1688-1700. 2021.

[14] Mitra, D., & Das Mohapatra, P. K. Cold adaptation strategy of psychrophilic bacteria: an in-silico analysis of isocitrate dehydrogenase. Systems Microbiology and Biomanufacturing, 1(4), 483-493. 2021.

[15] Mitra, D., Pal, A. K., & Mohapatra, P. K. D. In-silico study of SARS-CoV-2 and SARS with special reference to intra-protein interactions, A plausible explanation for stability, divergency and severity of SARS-CoV-2. 2020.

[16] Mitra, D., Dey, A., Biswas, I., & Das Mohapatra, P. K. (2021). Bioactive compounds as a potential inhibitor of colorectal cancer; an insilico study of Gallic acid and Pyrogallol. Annals of Colorectal Research, 9(1), 32-39.

[17] Mitra, D., & Bose, A. Remarkable effect of natural compounds that have therapeutic effect to stop COVID-19. Recent Advances in Pharmaceutica lSciences, 115-126. 2021.

[18] Mitra, D., Paul, M., Thatoi, H., & Mohapatra, P. K. D. Study of potentiality of dexamethasone and its derivatives against Covid-19. Journal of Biomolecular Structure and Dynamics, 1-11. 2021.

[19] Mitra, D., & Mohapatra, P. K. D. Inhibition of SARS-CoV-2 Protein by Bioactive Compounds of Edible Mushroom; A Bioinformatics Insight. International Journal of Advances in Science, Engineering and Technology, 9(2), 84-88. 2021.

[20] Cardenas, S., Auais, A., & Piedimonte, G. Palivizumab in the prophylaxis of respiratory syncytial virus infection. Expert review of anti-infective therapy, 3(5), 719-726. 2005.

[21] Kant, K., Rangra, N. K., Behera, P. C., Bani, B., Dey, S., Lal, U. R., ... & Ghosh, M. (2016). Computational prediction of pyrethroids as promising agents against respiratory syncytial virus: a comparative study. ECSOC, 1-10.

[22] Boukhvalova, M. S., Prince, G. A., & Blanco, J. C. Inactivation of respiratory syncytial virus by zinc finger reactive compounds. Virology Journal, 7(1), 1-10. 2010.

[23] Heylen, E., Neyts, J., & Jochmans, D. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochemical pharmacology, 127, 1-12. 2017.

[24] Perron, M., Stray, K., Kinkade, A., Theodore, D., Lee, G., Eisenberg, E., & Cihlar, T. GS-5806 inhibits a broad range of respiratory syncytial virus clinical isolates by blocking the virus-cell fusion process. Antimicrobial agents and chemotherapy, 60(3), 1264-1273. 2015

[25] Douglas, J. L., Panis, M. L., Ho, E., Lin, K. Y., Krawczyk, S. H., Grant, D. M., & Cihlar, T. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. Journal of virology, 77(9), 5054-5064. 2003.

[26] Liang, B., Li, Z., Jenni, S., Rahmeh, A. A., Morin, B. M., Grant, T., & Whelan, S. P. Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell, 162(2), 314-327. 2015.

[27] Chapman, J., Abbott, E., Alber, D. G., Baxter, R. C., Bithell, S. K., Henderson, E. A., & Powell, K. L. RSV604, a novel inhibitor of respiratory syncytial virus replication. Antimicrobial agents and chemotherapy, 51(9), 3346-3353. 2007.

[28] Mohanty, I. R., Borde, M., & Maheshwari, U. (2019). Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses. Phytomedicine, 57, 158-165.

[29] Ren, M., Zhao, Y., He, Z., Lin, J., Xu, C., Liu, F., & Wang, Y. Baicalein inhibits inflammatory response and promotes osteogenic activity in periodontal ligament cells challenged with lipopolysaccharides. BMC complementary medicine and therapies, 21(1), 1-11. 2021.

[30] Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., & Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Experimental and therapeutic medicine, 18(4), 2759-2776. 2019.

[31] Li, Q., Gao, J., Pang, X., Chen, A., & Wang, Y. Molecular mechanisms of action of emodin: as an anti-cardiovascular disease drug. Frontiers in Pharmacology, 1363. 2020.

[32] Wang, D., Wang, X. H., Yu, X., Cao, F., Cai, X., Chen, P., & Wang, X. Pharmacokinetics of Anthraquinones from Medicinal Plants. Frontiers in pharmacology, 12, 306. 2021.

[33] Malvy, D., Treilhaud, M., Bouée, S., Crochard, A., Vallée, D., El Hasnaoui, A., & RESSAC Study Group. A retrospective, case-control study of acyclovir resistance in herpes simplex virus. Clinical infectious diseases, 41(3), 320-326. 2005.

[34] Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic acids research, 37(suppl_2), W623-W633. 2009.

[35] Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. The RCSB PDB information portal for structural genomics. Nucleic acids research, 34(suppl_1), D302-D305. 2006.

[36] Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. Computer-aided prediction of pharmacokinetic (ADMET) properties. In Dosage form design parameters (pp. 731-755). Academic Press. 2018.

[37] Mitra, D. Quantum mechanical descriptors of nilotinib’s impurities. Quantum, 6(1), 1-10. 2018.

[38] Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341.

[39] Carneiro, S. S., Marinho, M. M., & Marinho, E. S. Electronic/Structural Characterization of Antiparkinsonian Drug Istradefylline: A Semi-Empirical Study. Int. J. Recent Res. Rev, 10(4), 9-14. 2017.

[40] Pedretti, A., Mazzolari, A., Gervasoni, S., Fumagalli, L., & Vistoli, G. The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects. Bioinformatics, 37(8), 1174-1175. 2021.

[41] Forli, W., Halliday, S., Belew, R., & Olson, A. J. AutoDock Version 4.2. J. Med. Chem, 55, 623-638. 2012.

[42] DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography, 40(1), 82-92. 2002.

[43] Bos, J. D., & Meinardi, M. M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology: Viewpoint, 9(3), 165-169. 2000.

[44] Climent, E., Benaiges, D., & Pedro-Botet, J. Hydrophilic or Lipophilic Statins?. Frontiers in Cardiovascular Medicine, 8, 491. 2021.

[45] Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623. 2002.

© The Author(s), under exclusive license to Technoarete Publishers 2022
About this Paper
Cite this paper

Debanjan Mitra, Pradeep K. Das Mohapatra. (2022). Effect of Natural Compounds to Inhibit Human Respiratory Syncytial Virus. In: Dr Sunita Singh, Dr Mohammed Aurifullah, Dr. Peiman Kianmehr, Dr. Monica Dragomirescu, Smart Environmental Science Technology and Management. Lecture Notes on Environment Conservation and Enrichment, vol 1. Technoarete Publishers. doi.org/10.36647/978-93-92106-02-6.18

Publisher Name

Technoarete Publishers

ISBN

978-93-92106-02-6

DOI

doi.org/10.36647/978-93-92106-02-6.18

  • ISBN - 978-93-92106-02-6
  • Instant PDF download
  • Readable on all devices
  • Total No. of. Pages - 150
  • Available to everyone
  • Free Access
doi.org/10.36647/978-93-92106-02-6.18

Full
Paper