
Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 21

An Analysis on the Techniques for Spotting and

Handling Conflicts in Software Design

Dr.Mohd Zuber
1*

, Dr.K.Balaji
2

1
 Madhyanchal professional university, India.

2
Surana College, Bangalore, India.

*Corresponding Author Email:
1
Mzmkhanugc@gmail.com

Abstract

This paper discusses the techniques for spotting and handling conflicts in software design. It examines the various approaches that can be

used to identify potential conflicts and how those conflicts can be addressed. It also explores the importance of conflict management in

software design, as well as the tools and techniques that can be used to help resolve conflicts. Finally, the paper provides an overview of

some of the best practices that can be employed to ensure that conflicts are handled in an effective manner.

Keywords

Conflict Resolution, Software Design, Spotting Techniques.

INTRODUCTION

Software design is the process of creating a software

system that meets a set of specific requirements. As part of

this process, conflicts can arise between different

stakeholders, including developers, users, and customers. In

order to ensure the successful delivery of a software system,

it is important to identify and manage conflicts as early as

possible. This paper will provide an analysis on the

techniques for spotting and handling conflicts in software

design.

Spotting Conflicts

The first step in managing conflicts in software design is to

identify them. There are several techniques that can be used

to spot potential conflicts, including brainstorming,

stakeholder analysis, and risk analysis.

Brainstorming is a creative problem-solving technique that

encourages stakeholders to brainstorm ideas and solutions to

potential conflicts. This allows all stakeholders to be aware of

potential conflicts and encourages them to work together to

come up with solutions.

Stakeholder analysis is a technique used to identify

stakeholders who may have a vested interest in the software

project. This analysis can help identify potential conflicts

between stakeholders, such as competing interests or

incompatible goals.

Risk analysis is a technique used to identify potential risks

that may arise during the software design process. This

analysis helps to identify potential conflicts that may arise

due to the complexity of the project or due to unforeseen

circumstances.

Handling Conflicts

Once conflicts have been identified, it is important to

address them in a timely manner. There are several

techniques that can be used to handle conflicts in software

design, including negotiation, compromise, and arbitration.

Negotiation is a technique used to reach agreement

between two or more parties. This involves discussing the

conflict and attempting to come up with a mutually beneficial

solution. Compromise is a technique used to reach agreement

between two or more parties by compromising on certain

aspects of the conflict. This involves each party agreeing to

accept some of the losses in order to reach an agreement (Liu

et al. 2020). Arbitration is a technique used to resolve

conflicts by having an impartial third party make a decision.

This is usually done by an impartial expert who is

knowledgeable in the subject matter.

Software design conflicts can be difficult to spot and

manage. In order to ensure the successful delivery of a

software system, it is important to identify and manage

conflicts as early as possible. This paper provided an analysis

on the techniques for spotting and handling conflicts in

software design, including brainstorming, stakeholder

analysis, risk analysis, negotiation, compromise, and

arbitration.

Definition of Conflict

Conflict in software design occurs when two or more

interests or ideas clash. This clash can arise from different

requirements, different approaches to solving a problem, or

simply from different personal preferences. It can cause

delays in the progress of a project or even lead to its complete

failure.

Techniques for Spotting and Handling Conflicts

1. Identifying Stakeholders: The first step in spotting and

handling conflicts in software design is to identify the

stakeholders. Stakeholders are people who have a vested

interest in the success of the project, including users,

developers, and stakeholders. By identifying the

stakeholders, it is easier to spot potential issues before

they become a major problem.

mailto:Mzmkhanugc@gmail.com

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 22

2. Setting Clear Goals and Expectations: Setting clear goals

and expectations at the start of a project can help to avoid

conflicts. When everyone is on the same page about what

is expected of them, it makes it easier to identify any

potential conflicts before they become a major problem.

3. Establishing an Open Dialogue: Establishing an open

dialogue between all stakeholders is an important part of

spotting and handling conflicts. By allowing all

stakeholders to voice their ideas and concerns, it is easier

to identify potential conflicts before they become a major

problem.

4. Encouraging Collaboration: Encouraging collaboration

between all stakeholders is another important step in

spotting and handling conflicts. By working together to

identify solutions to any potential conflicts, it is easier to

resolve them before they become a major problem.

5. Establishing Conflict Resolution Processes: Establishing

a conflict resolution process is an important step in

spotting and handling conflicts (Aghajani et al. 2019).

This process should include a set of rules and procedures

for resolving conflicts quickly and effectively.

Conflict in software design can be a major issue, but it can

be avoided with the right techniques. By identifying

stakeholders, setting clear goals and expectations,

establishing an open dialogue, encouraging collaboration,

and establishing conflict resolution processes, conflicts in

software design can be spotted and handled before they

become a major problem.

Types of Conflict

Software design conflicts can broadly be divided into two

categories: technical conflicts and interpersonal conflicts.

Technical conflicts arise when two design options appear to

be equally viable, but incompatibilities arise when the two

are combined. These conflicts often require the designers to

choose one option over the other. Interpersonal conflicts, on

the other hand, are disagreements between two or more team

members about the best way to approach a design.

Figure 1 : Types of Conflicts

(Source : Berger et al. 2020)

Techniques for Spotting and Handling Conflicts

The most effective way to spot and handle conflicts in

software design is through effective communication and

collaboration. When working as a team, it is important to

have open and honest conversations, as this helps everyone to

understand the different perspectives and opinions at play.

Additionally, it is important to have a clear understanding of

the overall design goals. With this knowledge, the team can

work together to identify potential conflicts before they arise.

When a conflict does arise, it’s important for the team to

work together to find a resolution. This may involve

brainstorming different solutions, running through various

scenarios, or even working with a third-party to gain an

objective perspective. Ultimately, it’s important to reach a

consensus that everyone can agree on and move forward

with.

In addition to communication and collaboration, it’s also

important to have effective conflict-management tools in

place. This can include setting clear expectations, creating a

timeline for project deliverables, and establishing a process

for resolving disagreements. All of these tools can help the

team to identify, address, and resolve conflicts quickly and

efficiently.

Conflicts in software design can be difficult to manage, but

with effective communication, collaboration, and

conflict-management tools in place, they can be effectively

addressed. By having open and honest conversations,

understanding the overall design goals, and having a clear

process for resolving disagreements, teams can work together

to reach a consensus and move forward with the project.

CAUSES OF CONFLICT

Table 1: Causes Impact

Causes Concern

Communication gap 33%

Contradiction of understanding 41%

(Source: Created by Author)

Poor Communication

Conflicts in software design can arise from a variety of

sources. These sources include miscommunication and

misunderstanding among stakeholders, competing priorities

and goals, mismatched expectations, lack of clarity in project

scope and objectives, and lack of resources or technical skills.

Additionally, conflicts can arise from the inherent

complexity of software design and development, including

the need to integrate multiple technologies, the unpredictable

nature of software development, and the large number of

stakeholders involved in the process.

Techniques for Spotting and Handling Conflicts

1. Communication: Good communication is essential for

spotting and resolving conflicts in software design.

Effective communication involves listening to other

stakeholders, asking questions to clarify expectations, and

providing feedback to ensure that everyone is on the same

page. Additionally, it is important to ensure that all

stakeholders understand the project objectives and are

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 23

aware of the resources and capabilities available.

2. Prioritization: Prioritizing tasks and goals is an important

technique for spotting and handling conflicts in software

design. By understanding the project’s overall objectives,

stakeholders can determine which tasks are the most

important, and agree on which tasks can be delayed or

postponed. Additionally, it is important to prioritize tasks

based on their importance to the project’s overall success.

3. Collaboration: Collaboration is key to resolving conflicts

in software design. By working together, stakeholders can

identify areas of disagreement, brainstorm potential

solutions, and work towards a shared understanding of the

project’s goals and objectives (Mascardi et al. 2019).

Additionally, collaboration can help stakeholders come to

an agreement on how to manage the project’s resources

and capabilities.

4. Conflict Resolution: When conflicts arise, it is important

to take steps to resolve them as quickly as possible. This

may involve engaging in open and honest conversations

with stakeholders, developing a plan to address the

conflict, and ensuring that all stakeholders are

comfortable with the solutions proposed. Additionally, it

is important to make sure that all stakeholders are aware

of the potential consequences of not resolving the

conflict.

5. Flexibility: Finally, it is important to remain flexible

when dealing with conflicts in software design.

Stakeholders should be open to considering different

solutions and approaches, and be willing to make changes

if necessary. Additionally, stakeholders should be willing

to compromise and make adjustments to the project’s

goals and objectives if necessary.

Ambiguous Specifications

Conflicts in software design can be caused by ambiguous

specifications and can be difficult to spot and handle. One

technique for spotting and handling conflicts is to ensure that

all stakeholders are involved in the design process and that

their requirements and expectations are adequately

documented. This helps ensure that stakeholders are on the

same page and that any potential conflicts between their

requirements can be identified and resolved early on.

Another technique for spotting and handling conflicts is to

use testing and verification techniques that are designed to

uncover any issues with the design (Lo et al. 2021). This can

include using automated testing tools to examine the code for

any potential issues, as well as manual testing to ensure that

the software meets the requirements. Additionally, code

reviews can be used to identify any potential conflicts in the

design.

Finally, the use of design patterns can help to minimize

conflicts in software design. Design patterns are reusable

solutions to common problems that can help ensure that the

software meets the requirements and avoids any potential

conflicts. Additionally, design patterns can also help to

reduce complexity and enable better maintainability.

The ambiguity of software design specifications can lead

to conflicts between parties involved in the design and

development process. Jabbar et al. (2020) stated that to

prevent such conflicts, it is important to identify and address

potential issues before they become a problem. There are a

number of techniques that can be used to identify and handle

conflicts in software design.

One technique is to ensure that all stakeholders in the

software design process are involved in the specification

process. This allows everyone to have a better understanding

of the problem and ensures that everyone is on the same page.

This also allows for easier communication between the

stakeholders and makes it easier to resolve any potential

conflicts.

Another technique is to use a common language for the

specification. This helps to reduce the ambiguity of the

software design and makes it easier for everyone to

understand. It also minimizes the chances of discrepancies

between the different stakeholders.

Another technique is to use diagrams and visualizations to

help explain the specifications. This can make it easier for

everyone to understand the specifications and helps to reduce

any potential confusion.

Finally, it is important to have a process for resolving any

conflicts that do arise. This can involve the stakeholders

discussing the issue and coming to a consensus on how to

proceed (Charlton et al. 2021). Having a clear process in

place can help to avoid any misunderstandings and ensure

that the design and development process runs as smoothly as

possible.

Software design is a complex process that requires

frequent collaboration between different stakeholders, and

conflicts are bound to arise. Conflict resolution is a critical

part of software design, as it helps to ensure that the final

product meets the requirements set out by the stakeholders. In

order to identify and handle conflicts, software designers

must be aware of the various techniques available to them.

One of the most common techniques for spotting and

handling conflicts in software design is to identify and

analyze ambiguous specifications. Ambiguity can arise from

a variety of sources, such as misunderstandings between

different stakeholders, conflicting opinions, or unclear

requirements. By looking at the specifications from multiple

perspectives, software designers can often identify

ambiguities and resolve them before they become larger

issues.

Another technique for spotting and handling conflicts in

software design is to identify and address potential sources of

conflict early on in the design process (Naseer et al. 2020).

This includes understanding stakeholder interests and

expectations, identifying areas of potential disagreement, and

establishing ground rules for resolving conflicts. By

addressing potential sources of conflict early on, software

designers can help to prevent disputes from escalating into

larger issues that could delay the development process.

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 24

Finally, software designers can use collaborative

problem-solving techniques to resolve conflicts. This

includes using active listening to understand the perspectives

of all stakeholders, brainstorming ideas to identify potential

solutions, and negotiating an agreement that meets the

interests of all parties involved. By using collaborative

problem-solving techniques, software designers can ensure

that conflicts are resolved in a timely and efficient manner.

Software design requires frequent collaboration between

different stakeholders, and conflicts are bound to arise. As

per Vilutiene et al. (2019) by understanding the various

techniques available for spotting and handling conflicts,

software designers can help ensure that the development

process is efficient and successful. These techniques include

identifying and analyzing ambiguous specifications,

addressing potential sources of conflict early on, and using

collaborative problem-solving techniques to resolve disputes.

Overlapping Responsibilities

One of the most common techniques for spotting and

handling conflicts in software design is to identify

overlapping responsibilities. This is especially important in

software design, as there can be a lot of stakeholders with

different interests and objectives that can lead to conflicting

requirements. It is important to identify where

responsibilities overlap in order to ensure that all

stakeholders are included in the software design process and

that their objectives are met.

In order to identify overlapping responsibilities, it is

important to take a step back and analyze the big picture. This

includes looking at the various stakeholders involved in the

software design process and their roles within the project. It is

also important to look at the different requirements and

objectives that each stakeholder has for the software design

and how they interact with one another. Once the big picture

has been analyzed, it is much easier to identify areas where

responsibilities overlap.

Once overlapping responsibilities have been identified, it

is important to handle them in a way that is fair and beneficial

to all stakeholders. This could involve assigning specific

tasks to different stakeholders, making sure that all

stakeholders are aware of the requirements of each other, or

even coming up with a compromise that all stakeholders can

agree on (Leite et al. 2021). It is important to keep

communication open and to ensure that all stakeholders are

able to voice their opinions and concerns.

Overall, it is important to identify overlapping

responsibilities in software design in order to ensure that all

stakeholders are included in the process and that their

objectives are met. By analyzing the big picture and

communicating openly, it is possible to handle overlapping

responsibilities in a way that is beneficial to all stakeholders.

STRATEGIES FOR CONFLICT RESOLUTION

Table 2: Conflicts Resolving Scope

Way of Resolving Standard Benefits

Improved expecting 17%

Source Knowledge 32%

(Source: Created by Author)

Establish Clear Expectations

Having clear expectations is essential for spotting and

handling conflicts in software design. This involves

communicating the purpose of the project, the timeline, and

the individual roles and responsibilities of each team

member. This helps to ensure that everyone is on the same

page and working towards the same goal. It also allows for

open dialogue between team members and management,

which helps to identify potential issues early on and avoid

conflicts from arising. Establishing a shared understanding of

the project goal and timeline helps to keep everyone

accountable and on track. Additionally, expectations should

be flexible enough to accommodate changes in the scope or

timeline of the project. By having clearly defined

expectations, teams can proactively plan for potential

conflicts and come up with strategies to address them.

The first step in spotting and handling conflicts in software

design is to establish clear expectations. This means

communicating to all stakeholders what the goals of the

project are, what the timeline is, and what the budget is.

Setting expectations early on in the process can help to

prevent misunderstandings down the line. Having a unified

vision of the project at the start can also help to prevent

design conflicts from occurring. Additionally, establishing

who is responsible for what can help to ensure everyone is on

the same page and that there is a clear understanding of who

is responsible for what tasks. This can help to prevent

conflicts from arising in the first place.

In order to effectively spot and handle conflicts in software

design, it is important to establish clear expectations between

stakeholders. This begins with setting out clear goals and

objectives for the design and development process(Dargan et

al. 2020). Stakeholders should be made aware of their roles

and responsibilities, the timeline for the project, the budget,

and any other relevant details. It is also important for

stakeholders to understand the scope of the project and the

expected outcome. By establishing clear expectations,

stakeholders can be held accountable for their contributions

and any potential conflicts can be addressed before they arise.

Additionally, communication between stakeholders should

be encouraged in order to keep everyone on the same page

and ensure that all parties are aware of any changes that may

occur.

Identify the Source of Conflict

Conflict in software design can originate from a variety of

sources. These can include competing objectives between

stakeholders, cultural differences between teams, lack of

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 25

clarity around project goals, and disagreements over

technology choices (Eck et al. 2019). Other sources of

conflict can include disagreements over how features should

be implemented, how resources should be allocated, or how

timelines should be managed. Additionally, conflicts arise

when there is a lack of communication or collaboration

between teams, when teams have difficulty understanding

each other’s perspectives, or when teams lack the tools and

processes needed to effectively collaborate.

The source of conflict in software design can vary

depending on the particular project. Common sources of

conflict include communication issues between designers and

developers, resource allocation problems, and differences in

design goals. Communication issues often arise due to

misunderstandings between team members, or a lack of

communication between designers and developers. Sharma et

al. (2020) stated that resource allocation problems may arise

due to limited budgets or a lack of skilled workers. Lastly,

differences in design goals can lead to disagreements

between team members regarding the overall direction of the

project.

Conflicts in software design can arise from a variety of

sources. These include disagreements between software

engineers, disagreements between software engineers and

stakeholders, and conflicts between different stakeholders.

Additionally, conflicts may arise due to differences in

software design philosophies, coding styles, feature sets, and

other factors. Consequently, it is important to be able to

identify and address the source of conflict in order to prevent

it from escalating and damaging the project.

The source of conflict in software design can stem from a

variety of sources. These include the team’s individual goals

and values, the stakeholders’ goals, the varying technical

skills of the team members, and the design of the software

itself (Jha et al. 2019). Disputes can also arise from different

interpretations of the same problem or different approaches

to solving a problem. Moreover, disputes may also arise from

a lack of communication and understanding between team

members or between the team and stakeholders. Ultimately,

the source of conflict can vary depending on the context, but

the underlying causes are typically rooted in the different

goals and values of the individuals andstakeholders involved.

Figure 2 : Conflicts Resolving Scope

(Source: Aledhari et al. 2020)

Take Time to Listen

One of the most important techniques for spotting and

handling conflicts in software design is to take time to listen.

This involves actively listening to the team members

involved in a project, as well as any stakeholders, to identify

potential conflict points. This means actively engaging with

people, asking questions, and taking notes. It is important to

try to understand the different perspectives at play, in order to

identify potential areas of conflict and begin to work towards

resolving them. This can be done through discussions,

brainstorming sessions, and other collaborative techniques.

By listening carefully, the team can avoid potential conflicts

before they become too big of an issue, and also identify

areas of agreement in order to move forward with the project.

One of the most important techniques for spotting and

handling conflicts in software design is to take the time to

listen. It is important for the software designers to actively

listen to all stakeholders and to take into consideration their

needs and opinions. By doing this, software designers can

identify potential conflicts before they arise and come up

with a plan on how to handle them. Taking the time to really

listen to all stakeholders can also help to resolve conflicts

before they even begin, as it can foster open communication

and create a shared understanding between all parties

(Vassllo et al. 2020). Furthermore, taking the time to listen

can also help to build trust between stakeholders, which can

be beneficial for the software design process and the eventual

outcome.

Brainstorm Solutions

As per clarinval et al. (2020) one technique for spotting

and handling conflicts in software design is to identify the

stakeholders involved in the project. Stakeholders can

include the software developers, product owners, and users.

By understanding the different needs and interests of each

stakeholder, it is possible to identify potential conflicts before

they become a problem. Additionally, communication

between the stakeholders should be established early on in

the project, to ensure that any conflicts can be addressed

promptly.

Another technique for spotting and handling conflicts in

software design is to use automated tools to track changes

and to detect any potential conflicts. By using automated

tools, it is possible to monitor changes to the code and alert

the team when a potential conflict arises. This can help to

reduce the amount of time spent manually searching through

code.

Finally, a third technique for spotting and handling

conflicts in software design is to use version control systems.

This allows developers to easily track changes to the code

and to backtrack if any conflicts arise (Banga et al. 2021).

Version control systems also make it easier to collaborate on

projects, as they provide an easy way to share code and track

changes.

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 26

Create a Win-Win Solution

Creating a win-win solution is one of the most effective

techniques for spotting and handling conflicts in software

design. This approach involves all parties coming together to

identify a solution that benefits everyone involved. As per

Tobias and Spanier (2020) the goal is to find a way to satisfy

both sides, such that both parties gain something from the

agreement. This can be done by brainstorming possible

solutions, looking for common ground, and negotiating to

reach a mutually beneficial outcome. With this technique, it

is important to ensure that the interests of both parties are

considered and that all parties are given a chance to express

their opinions. This approach can help to create a positive

environment that encourages collaboration and innovation,

allowing for more efficient and effective software design.

The best way to handle conflicts in software design is to

create a win-win solution. This involves both parties

discussing the issue and coming to an agreement that satisfies

everyone’s needs. In creating a win-win solution, both parties

should focus on the interests of each other and the overall

goal of the project, instead of focusing too much on

individual wants and needs (Gul et al. 2019). This can be

achieved through active listening, open communication and

compromise. It is important to recognize that both parties

may have legitimate points of view and that there may be a

solution that works for both. Through compromise and open

dialogue, it is possible to come to an agreement that everyone

can be happy with.

CONCLUSION

In conclusion, there are a variety of techniques for spotting

and handling conflicts in software design. Implementing a

collaborative and iterative approach to system design is

essential to successful conflict resolution. Additionally, it is

important to ensure that all stakeholders in the design process

are kept informed of any changes to designs and that the team

is open to feedback. With these strategies in place, software

design teams can identify and resolve conflicts quickly and

efficiently.

In conclusion, the techniques for spotting and handling

conflicts in software design are essential for successful

development. Identifying the source of the conflict, assessing

its scope and severity, and understanding the underlying

needs of stakeholders is a critical first step. Once the source

of the conflict is understood, the team can work together to

brainstorm and develop solutions. When conflicts arise, it is

important to remain calm, communicate clearly, and focus on

the best interests of the project. By following these

techniques, teams can effectively address conflicts and

ensure the success of their software designs.

In conclusion, conflict resolution in software design is an

important part of the development process. There are a

variety of techniques that can be used to identify conflicts

early on and to provide solutions to them. These techniques

include peer reviews, user feedback, prototyping, and

automated conflict detection. By leveraging these techniques,

software developers can ensure that their designs are

optimized for the best possible user experience.

REFERENCES

[1] Aghajani, E., Nagy, C., Vega-Márquez, O.L.,

Linares-Vásquez, M., Moreno, L., Bavota, G. and Lanza, M.,

2019, May. Software documentation issues unveiled. In 2019

IEEE/ACM 41st International Conference on Software

Engineering (ICSE) (pp. 1199-1210). IEEE.

[2] Aledhari, M., Razzak, R., Parizi, R.M. and Saeed, F., 2020.

Federated learning: A survey on enabling technologies,

protocols, and applications. IEEE Access, 8,

pp.140699-140725.

[3] Banga, H.K., Kalra, P., Kumar, R., Singh, S. and Pruncu, C.I.,

2021. Optimization of the cycle time of robotics resistance spot

welding for automotive applications. Journal of Advanced

Manufacturing and Processing, 3(3), p.e10084.

[4] Berger, T., Steghöfer, J.P., Ziadi, T., Robin, J. and Martinez, J.,

2020. The state of adoption and the challenges of systematic

variability management in industry. Empirical Software

Engineering, 25(3), pp.1755-1797.

[5] Charlton, N.P., Swain, J.M., Brozek, J.L., Ludwikowska, M.,

Singletary, E., Zideman, D., Epstein, J., Darzi, A., Bak, A.,

Karam, S. and Les, Z., 2021. Control of severe, life-threatening

external bleeding in the out-of-hospital setting: a systematic

review. Prehospital Emergency Care, 25(2), pp.235-267.

[6] Clarinval, A., Simonofski, A., Vanderose, B. and Dumas, B.,

2020. Public displays and citizen participation: a systematic

literature review and research agenda. Transforming

Government: People, Process and Policy.

[7] Dargan, S., Kumar, M., Ayyagari, M.R. and Kumar, G., 2020.

A survey of deep learning and its applications: a new paradigm

to machine learning. Archives of Computational Methods in

Engineering, 27(4), pp.1071-1092.

[8] Eck, M., Palomba, F., Castelluccio, M. and Bacchelli, A.,

2019, August. Understanding flaky tests: The developer’s

perspective. In Proceedings of the 2019 27th ACM Joint

Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (pp.

830-840).

[9] Gul, M., Hameed, M.H., Nazeer, M.R., Ghafoor, R. and Khan,

F.R., 2019. Most effective method for the management of

physiologic gingival hyperpigmentation: A systematic review

and meta-analysis. Journal of Indian Society of

Periodontology, 23(3), p.203.

[10] Jabbar, A., Akhtar, P. and Dani, S., 2020. Real-time big data

processing for instantaneous marketing decisions: A

problematization approach. Industrial Marketing

Management, 90, pp.558-569.

[11] Jha, S., Kumar, R., Abdel-Basset, M., Priyadarshini, I.,

Sharma, R. and Long, H.V., 2019. Deep learning approach for

software maintainability metrics prediction. Ieee Access, 7,

pp.61840-61855.

[12] Leite, L., Pinto, G., Kon, F. and Meirelles, P., 2021. The

organization of software teams in the quest for continuous

delivery: A grounded theory approach. Information and

Software Technology, 139, p.106672.

[13] Liu, Z., Chen, C., Wang, J., Huang, Y., Hu, J. and Wang, Q.,

2020, September. Owl eyes: Spotting ui display issues via

visual understanding. In 2020 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE) (pp.

398-409). IEEE.

[14] Lo, S.K., Lu, Q., Wang, C., Paik, H.Y. and Zhu, L., 2021. A

systematic literature review on federated machine learning:

Technoarete Transactions on Advances in Computer Applications (TTACA)

Vol-1, Issue-3, September 2022

e-ISSN: 2583-3472

 27

From a software engineering perspective. ACM Computing

Surveys (CSUR), 54(5), pp.1-39.

[15] Mascardi, V., Weyns, D., Ricci, A., Earle, C.B., Casals, A.,

Challenger, M., Chopra, A., Ciortea, A., Dennis, L.A., Díaz,

Á.F. and El Fallah-Seghrouchni, A., 2019. Engineering

multi-agent systems: State of affairs and the road ahead. ACM

SIGSOFT Software Engineering Notes, 44(1), pp.18-28.

[16] Naseer, M., Zhang, W. and Zhu, W., 2020. Early prediction of

a team performance in the initial assessment phases of a

software project for sustainable software engineering

education. Sustainability, 12(11), p.4663.

[17] Sharma, T., Singh, P. and Spinellis, D., 2020. An empirical

investigation on the relationship between design and

architecture smells. Empirical Software Engineering, 25(5),

pp.4020-4068.

[18] Tobias, G. and Spanier, A.B., 2020. Developing a mobile app

(iGAM) to promote gingival health by professional monitoring

of dental selfies: user-centered design approach. JMIR

mHealth and uHealth, 8(8), p.e19433.

[19] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall,

H.C. and Zaidman, A., 2020. How developers engage with

static analysis tools in different contexts. Empirical Software

Engineering, 25(2), pp.1419-1457.

[20] Vilutiene, T., Kalibatiene, D., Hosseini, M.R., Pellicer, E. and

Zavadskas, E.K., 2019. Building information modeling (BIM)

for structural engineering: A bibliometric analysis of the

literature. Advances in Civil Engineering, 2019.

