
Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 1

Enhancing Data Security in Knowledge Databases:

A Novel Integration of Fast Huffman Encoding and

Encryption Techniques

Babita Kumari1*, Dr. Neeraj Kumar Kamal2, Dr. Arif Mohammad Sattar3,

Mritunjay Kr. Ranjan4*, Rishu Jain5

1Research Scholar, P.G. Dept. of Mathematics and Computer Science, Magadh University, Bodh Gaya, India
2Assistant Professor, Dept. of Physics, A.M. College, Gaya, India

3Associate Professor, Dept. of MCA, Dewan Institute of Management Studies, Meerut, India
4Assistant Professor, School of Computer Sciences and Engineering, Sandip University, Nasik, India

5Assistant Professor, Dewan Institute of Management Studies, Meerut, India

*Corresponding Author Email: mcababitapaswan@gmail.com

Abstract

In today’s rapidly changing technological environment, it is critical to protect knowledge databases, which are vast and elaborate.
Conventional security techniques sometimes fail to manage speed, security, and data structures well at the same time. This paper proposes
an improved model for improving data security in knowledge databases using the fast Huffman encoding algorithm. Huffman encoding not
only shrinks the size of data but also hides some patterns to make it more difficult for unauthorized persons to access. In combination with
encryption, the proposed approach provides both efficacy and strong security guarantees. The model is also capable of overcoming some of
the major drawbacks of the conventional methods and enhancing the encryption capability and security of data. This paper describes the
theoretical foundation of the model, how the model can be put into practice, and the proof of its efficiency. Studies show that it is much more

secure and efficient than traditional approaches, as scientific studies prove. It has been seen that the proposed approach helps in minimizing
the security issues and, at the same time, helps in managing the resources in a better way, which is a big boon in today’s world where huge
volumes of data are being generated on a daily basis.

Keywords

Data Security, Knowledge Databases, Huffman Encoding, Data Compression, Encryption, Efficiency, Security Framework, Information
Protection

INTRODUCTION

In today’s world, where technology developments are

accelerating and the amount of data is increasing more than

exponentially, it has become a critical issue for organizations

to secure knowledge databases. The use of knowledge

databases, which include large and complex databases of

linked data and information, ontologies, and metadata for

strategic planning and decision-making. These databases are

relatively complicated and, thus, susceptible to hacking and

other cyber threats [1]. Historically, techniques of securing

data did not do justice to defining a balance of productivity as

well as security, especially with a rise in more complex

attacks. The current digital security solutions must

encompass data and information accuracy, availability, and

functionality. Most classical security techniques operate

independent of each other, which leads to more risks and

ineffective solutions, such as encryption or data compression.

Saying that, encryption insulates data from sharing and

unauthorized access. However, this process may be complex,

especially in big data applications. Even though data

compression aims at minimizing the extent of the file, it has

the effect of disclosing data [2]. The problem that arises is a

security framework that aligns these processes in order to

facilitate a comprehensive knowledge database solution. This

paper presents a new model that incorporates Huffman

encoding, an appreciated compressing algorithm, into an

overall encrypting system to protect knowledge databases. In

this paper, the proposed model employs the Huffman

encoding technique to minimize data size and conceal the

patterns exploitable by attackers. After the compression, the

data is encrypted, making it very secure [3]. This dual

approach minimizes the size of the data set and enhances the

rate of encrypting the information, making it less vulnerable

to insecurity. This model is founded on security facets of data

and their compression. The framework for the proposed

coalesced index uses Huffman encoding, which optimally

encodes symbols depending on their probability of

occurrence. The extension with Huffman encoding enhances

the encryption algorithms such as AES by minimizing the

data size [4]. This integration enhances the approaches of

compression and encryption to enhance the security of the

knowledge databases. Details of the implementation of the

proposed model and experimental results on simulated

knowledge databases containing various types of data will be

discussed in this paper. The conceptual experiences measure

compression ratios, encryption times, decryption times, and

data security. These metrics are examined in this research to

demonstrate the enhanced security and efficiency that result

from using Huffman encoding together with encryption to

https://technoaretepublication.org/computer-applications/index.php
mailto:mcababitapaswan@gmail.com

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 2

present a realistic solution that could be utilized by

organizations with valuable data to safeguard. The existing

literature on knowledge database security will be reviewed in

this paper in terms of data compression and encryption

strategies and the proposed model for handling the difficulties

created by intricate data sets. The given framework improves

data security by including Huffman encoding [5] together

with its intensive encryption. The findings of this research

may contribute to the development of better security

mechanisms for knowledge databases in a globalized

environment where confidentiality of data is crucial.

Objective:

 To establish the Huffman encoding model that is

integrated with encryption in order to strengthen

security on the knowledge databases.

 To minimize the computational cost at the sacrifice of

some aspects of data compression and encryption,

maintaining efficiency and reliability.

 To hide patterns of data and avoid various threats, create

reliable protection against access by unauthorized

individuals to highly informative databases.

RELATED STUDY

Table 1. Comparative Study on Category Details and Key features and Challenges

Category Description Key Features Challenges

Background [6] Knowledge repositories are designed to contain

and access information with dependent and

independent connections and contexts. These

demand specific approaches for handling their

characteristic features and the manner in which

they are used.

Complexity of the data

relationship Contextual

data storage.

The conventional approaches

do not work best in dealing

with structures. Require

advanced solutions.

Definition and

Purpose [7]

Knowledge databases store structured, semi-

structured data as well as unstructured data.

They facilitate decisions, knowledge and

organizational learning.

Semantic data support

and ontology querying of

data.

Challenges in querying and

managing semantic data.

Characteristics

[8]

Deal with complex real world data relationships.

Integrate related, multiple types of data.

The last element is known as adapting to change

in data and relationships.

Complexity Connected

information operability

for volatile data.

Demand specific procedures

of storing and searching the

information. Some of the

factors that make it difficult

to maintain adaptability.

Applications [9] Applicable in healthcare, finance, education,

and research to name but a few in expert

systems, decision support systems, and the like.

Improves the organization’s competencies by

offering up-to-date information on the field.

Expert systems Decision

support systems Content

management

Different for different

industries as it depends on the

specific nature of the

business.

Importance of

Security [10]

Consequences include monetary, legal, and

image loss costs. Outcomes can be monetary,

legal, and image loss outcome-an Outcomes can

be contained monetary, legal, image loss costs.

Classical cryptographic procedures are unable to

overcome the challenges posed by knowledge

databases’ architectures.

Covers financial, legal

and reputation

management risk.

Preserves hierarchical

databases.

The strengths and the

weaknesses of the proposed

approach.

Challenges [10] Efficiency vs. safety. It is clear that complex

structures are vulnerable to attacks. Security

solutions cannot afford to worsen the

performance of a database.

Trade-off between

privacy, speed, and

protection; data-related

challenges; and their

impact on performance.

Problems with immediate

search requests and the ability

to provide sufficient

productivity when used

frequently.

Emerging

Solutions [11]

Combining modern algorithms, for example,

Huffman encoding and standard security

solutions help create broad frameworks. It is

clearly seen that their integration results in better

performance and level of protection.

Huffman encoding data

compression integrated

with encryption.

Interoperability issues as well

as compatibility within the

existing organizational

systems.

Relevance of

Research [12],

[13]

The following study focuses on the

advancement in security models that use

Huffman encoding and encryption while

achieving optimal throughput and minimizing

the impact on security on databases.

Combines data

compression with

encryption, focuses only

on enhancing the

performance as well as

the security of the data.

Organizational

Implementation Issues and

High Performance Work

Systems.

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 3

Table 2. Huffman Encoding - Mechanism, Advantages, Applications, Limitations, and Relevance to Data Security

Segment Subsection Description

Mechanism of

the Algorithm

[14]

Frequency

Analysis

The algorithm starts with the calculation of the frequency of each character in the

given dataset. Frequently used characters are given shorter codes than the less

frequently used characters.

Binary Tree

Construction

From the frequency data, a binary tree is formed, in which each node is a character

of the text or document. The tree that is created is constructed in a way that the

most often occurring characters reside closer to the root, and therefore they will

require lesser path (codes).

Code Generation Moving from one node to another, produces the binary strings for the characters,

thus making it more compact saving on the total size of the data.

Advantages of

Huffman

Encoding [15]

Efficiency The algorithm generally provides massive data compression, which finds

applications across the spectrum including file compression and data transmission.

Optimality When the exact probability of each symbol is well understood, Huffman coding is

considered optimal for lossless compression. This means that it avoids a longer

expected code length.

Simplicity The algorithm is simple and is easy to implement. Therefore no complicated

mathematical computations are needed, making it suitable for real world

implementation.

Applications

[16]

File Compression

Formats

Huffman coding is implemented in common file formats such as ZIP, JPEG and

PNG because when data storage and transmission occurs most of the time the least

amount of space is needed.

Data

Transmission

It has been largely used to minimize bandwidth in communication processes and

act as a major contribution to improved communication throughput.

Encoding

Schemes

Huffman encoding is then used in a number of encoding techniques. For example,

in multimedia and text retrieval, in order to reduce the amount of space required

for storage.

Limitations [17] Static vs.

Dynamic

It has been depicted, Huffman coding is most efficient in situations whereby the

characters in the data set do not change frequently from time to time.

Overhead The requirement to preserve and convey the Huffman tree can pose overhead,

especially when data is small, and the advantage of the compression achieved may

be offset by the tree size.

Relevance to

Data Security

[18]

Data Security

Integration

The combination of Huffman encoding with encryption techniques opens the way

to further improving data protection in knowledge base databases.

Efficiency and

Security

Data compression done by Huffman can assist in hiding a pattern of traffic as well

as less traffic that requires encryption, meaning efficiency is achieved.

PROBLEM STATEMENT

In the age of big data, it is a difficult problem to protect

knowledge bases because of their intricate and voluminous

information. In many cases, traditional security approaches

do not provide sufficient protection and, at the same time, do

not cope with the protection effectively for complex

structures of data. Flaws in the techniques used to compress

and encrypt data make these databases easy targets for

hackers as well as greedy system users. This research also

seeks to overcome those limitations since the proposed

integrated model is composed of fast Huffman encoding and

enhanced encryption mechanisms. The model also intends to

improve the efficiency of data security through optimizing

data reduction with lossless data compression and encryption

to minimize computational burden and data patterns that

could be security threats.

HUFFMAN ENCODING ALGORITHM

One of the most common data compression techniques

employed is Huffman encoding, whereby newly assigned

codes to symbols are determined by the occurrence frequency

of these symbols. On this basis, the codes for frequently used

symbols are shorter, whereas less often used symbols are

assigned longer codes [13], [19]. It is also useful in shrinking

the amount of data stored or transmitted, as the method will

reduce the size of the data. The most famous Huffman

encoding is quite efficient and used in some compression

standards like JPEG and PNG ((Table.1).

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 4

Table 3. Algorithm Approach (Algorithm-1)

Input: Label map data

Output: dict, encoded Data

S1. Compute the frequency of each symbol:

 symbols, freqs ← count(data)

S2. Construct nodes based on symbols and their

frequencies:

num, nodes ← constructNode(symbols, freqs)

S3. For i = 1 to num - 1 do:

 Sort nodes in ascending order of frequency:

nodes ← sort(nodes, freq)

 Create a new node with the two smallest

nodes:

newNode ← constructNode(nodes[1],

nodes[2])

 Assign child nodes to the new node:

newNode.left ← nodes[1]

newNode.right ← nodes[2]

 Update the nodes array:

nodes ← [newNode, nodes[3:end]]

S4. Traverse the tree to generate the dictionary:

 dict ← traverse Tree(nodes[end])

S5. Encode the data using the dictionary:

 encodedData ← encode (data, dict)

End

Implementation Process

Figure 1. Data Encoding Process

The first procedure in the encoding of data is the

determination of frequency densities of each sign in the input

data (Figure 1). In this step, two things are made, namely, the

list of images and the frequencies of the images. As it is an

analogy with the symbol set of “ABACA,” we can state that

the frequencies are {3, 1, 1} and the characters are {[A], [B],

[C]}. With these symbols and frequencies, nodes are created

that have areas for left and right child nodes, and each node

has its own symbol and its frequency. Following that, a

hierarchical tree is constructed from these pieces. The nodes

are sorted by frequency again and again, where two less

frequent words are combined into a new node. The new node

is then assigned the value of the sum of the two nodes on the

lower end of the frequency spectrum. They become its left

and right children, respectively. This process goes on until we

have only one node, and this is the tree root node. The next

step is to go through the tree again and give them binary

numbers to every symbol as shown below. Setting the left

branches as `0` and the right branches as `1} builds a

dictionary of the symbols to code. The last is to turn over the

data map and change each of the symbols in line with their

codes in binary. This means an identification, a brief,

condensed, dual set of figures. The created product is the

binary dictionary and the encoded data that is encoded in

binary form, making it easier to store and send the data.

PROPOSED MODEL

For constructing an impenetrable security system for a

resultant KB, the proposed model combines Huffman

encoding for data compaction with new generation

encryption algorithms. The foregoing resiliency means that to

increase data safety and functionality, it is done in parallel to

address issues that come with categorized data formats. In

this way, for every non-reference pixel, the model defines the

corresponding embeddable bits according to the label map

that is generated. But when embedding and extracting the

secret data reversibly, the label map has to be embedded in

the embeddable bits. If performed directly, the label map

takes away space that would otherwise be available for the

actual secret data to be embedded. To avoid this, the model

makes use of adaptive Huffman encoding for the label map

such that it occupies the minimal space possible. In Huffman

coding, a variable-length encoder, a set of the code words of

the shortest length possible is developed by using

probabilities of character occurrence to compress data

without data loss. The process involves constructing a binary

tree where characters occupy the leaf nodes, and branches

represent encodings—typically "0" for one branch and "1" for

the other. This encoding ensures efficient compression but

does not produce unique results because:

 When two symbols are assigned the same probability in

constructing the Huffman tree, the tree developed is none

of them unique.

 It is important to realize that the branches 0 and 1 are not

set during the encoding; it is possible to encode the left

branch as 0 and the right branch as 0 too.

These two reasons make it possible to have different encoding

outcomes. Nevertheless, the likely occurring characters are

assigned shorter code words, whereas the less likely

characters are given long code words. As in the proposed

method, different images generate different label maps; a

method of determining the probability of the elements in the

label map to generate the shortest code words on average is a

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 5

way of achieving better lossless compression (Figure 2).

Figure 2. Huffman tree and label encoding results for Lena

In order to illustrate this process more comprehensively,

the encoding process of the proposed method is described in

this subsection with the Lena image [20]. First, we compute

the frequencies of the nine labels 0-8 related to the label

graph. According to the calculated frequencies, Huffman

encoding is done for each label. Algorithm 1 provides a

detailed account of the building process of the Huffman tree

as follows. The generated label map is then converted into a

binary sequence based on the mapping between the encoded

label and the codeword [21]. From the above analysis, it can

be known that the length of the binary sequence of the label

map is able to be got by Eq. (i).

𝐿𝑒𝑛𝑡 = ∑ (𝑛𝑢𝑚𝑡 ⋅ 𝑐𝑜𝑑𝑒𝐿𝑒𝑛𝑡)
8
𝑡=0 , 0 ≤ 𝑡 ≤ 8 …… (i)

Where,

 Numt is the number of label t in the label graph and code.

 Lent is the length of the code word corresponding to label

t.

Principle of Rapid Huffman Encoding

Real-time JPEG encoding is possible if the time taken in

each of the individual forms of operation corresponds with

the rate at which the JPEG data is fed into the pipeline. In a

standard JPEG encoding setup, where the relative sampling

frequency is {2×2, 2×2, 2×2} for full sampling, each

Minimum Coded Unit (MCU) consists of 64 pixels, requiring

64 clock cycles for loading. Common steps such as 2D-DCT,

quantization, Zigzag scanning, and DPCM&RLE of the

image generally require nearly 64 cycles each to be

completed. But the duration of Huffman encoding is not

determinate. In simple image encoding it can take less than

64 cycles, while in complex image encoding it can take more

than 64 cycles. This results in some of the Huffman encoding

stage being slower, sometimes slowing down the other

modules and thereby not providing real-time encoding. Using

relative encoding, Huffman encoding assigns short bit values

to codes with more frequently used referenced data and

longer codes for less frequently used reference data. For

example, the given string ABAACDAAAB comprises the

characters represented in (Table. 4), which shows the

numerical representation of the frequency of each of those

characters.

Table 4. Huffman Coding for Letters Based on Frequency
A B C D

Frequency 6 2 1 1

Huffman Code 0 10 110 111

The string of letters mentioned above consists of four

letters distinct from each other, requiring 2 bits for

representation; hence the total will be 20 bits for a 10-

character sequence. Nevertheless, with an optimal Huffman

coding from (Table. 4) below, the symbol sequence requires

(6×1) + (2×2) + (1×3) + (1×3) = 16 bits, or 4 bits less. As a

consequence of DPCM and RLE, multiple pairs of run length,

size, and amplitude are produced [22]. When a Huffman table

is used, the actual encoding process is easy; much simpler

than EDS, because all the encoding is accomplished by

looking up in a Huffman table to replace the actual data with

the Huffman code. The Huffman encoding process relies on

four specific tables: luminance AC coefficients, chrominance

AC coefficients, luminance DC coefficients, and

chrominance DC coefficients [23]. VLC and VLI are the two

types of Huffman encoding. Different symbols are inferred

by VLC for codewords of different lengths and can be

determined from the Huffman table of (Run Length, Size). At

the same time, VLI directly reflects the properties of the input

data as an amplitude represented as a binary integer. For

encoding, one has to substantially manipulate the splicing,

shifting, and registering of VLC or VLI codes. To control

this, a register bit pointer is assigned for every VLC and VLI

codeword present within the stream. (Figure. 3) below shows

the Huffman encoding process for each of the data pairs (Run

Length, Size, Amplitude): A = 0; B = 10; C = 110; D = 1110;

The major steps of Huffman encoding.

Figure 3. Runlength, Size, Amplitude) data in Huffman

encoding

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 6

Bit pointer loads VLC (b bit) in the first clock cycle, and

its effective number of bits is (a+b). Calculate the effective

bits in the second clock cycle. In the third clock cycle, the bit

pointer loads the VLI (c bit), and the effective number of bits

is (a+b+c-8); in the fourth clock cycle, if (a+b+c-8) is greater

than 8, generate the code-byte Byte1. Usually, Huffman

encoding takes 4 clock cycles, but byte generation takes 2 if

the effective bit number of the bit pointer is greater than 16

after splicing VLI or VLC. The entire process will take 4–6

clock cycles. Thus, this article optimizes (Figure. 3) and

designs a Huffman encoding structure for double-byte

splicing output to reduce clock cycles [24]. The above

structure shows that VLI and VLC encoding can combine the

splicing and shifting processes. Thus, one clock cycle can

complete splicing and shifting. By increasing the bit pointer

bit width, double-byte output occurs after splicing VLC and

VLI since Byte 0 or Byte 1 output takes 1 to 2 cycles. Finally,

Huffman encoding outputs double-byte data in a clock cycle,

so the shift to produce bytes process takes one clock cycle.

These two optimizations will reduce the time consumption of

each (Run length, Size, Amplitude) in Huffman encoding to

2 clock cycles, but they won't handle complex situations.

DPCM&RLE allows MCUs to output 64 pairs (Run length,

Size, Amplitude). Huffman encoding with double byte

splicing output processes 64 pairs (Run length, Size,

Amplitude) in 128 clock cycles, twice as long as other JPEG

modules. To achieve real-time encoding, limit the Huffman

encoding cycle to 64 clock cycles so all modules in the

pipeline spend the same cycle. Besides double-byte splicing

output, this paper proposes a new Huffman encoding

architecture (Figure 3). DCPM & RLE has two FIFOs for Run

length, Size, and Amplitude (Figure 3) [25]. Different

Huffman encoding units can read the data simultaneously

because the first 32 groups are stored in FIFO32 and the rest

in FIFO 64. Huffman0 and Huffman1 are operated

simultaneously to reduce clock cycle consumption. Bit

stream recombination is set up in the output section to sort

and reassemble fragmented bit streams from different

Huffman encoding units to recover them completely (Figure

4).

Figure 4. Huffman encoding architecture

The efficient Huffman encoding architecture, as illustrated

in (Figure 4), is designed to deliver excellent performance

and is structured into two main components: Functional

Huffman Encoder (FHE) and bit stream recombination. This

approach replaces the single-stage pipeline with a two-stage

pipeline. Although the number of clock cycles needed to

process a single DU is larger compared to processing it in a

straightforward manner, this is compensated by more data

throughput and processing capability. Thus, it becomes

possible to encode such images that contain 64 pairs of Run

Length, Size, and Amplitude values with the help of Huffman

encoding for more than 64 clock cycles. Therefore, the

elapsed time for each step involved in JPEG encoding is

similar, which makes it possible for JPEG encoding to occur

in a non-blocking fashion.

Dual Huffman encoding module

VLC encoding will assign some symbols shorter

codewords than others, achieving at the end the least number

of total bits utilized for encoding, thereby minimizing

resource utilization. The Huffman encoding process can be

broken down into three main stages: VLC encoding, VLI

encoding, as well as doing the rest at the later stages to get the

overall number of 16 bits, as illustrated in (Figure 5). The

VLC code is developed after decoding all four Huffman

tables at the same time, while the VLI code is directly

extracted from the terminal input of a module. Due to the fact

that the encoding involves the mapping of VLC and VLI

codes which entails splicing, shifting, and registration onto

the codeword register and sign register, a word_reg has been

used here to record the codewords into a codeword register.

Furthermore, a bit pointer register (bit_ptr) is used to count

down the accurate number to the really effective bits used in

the word_reg. The result of the Huffman coding is in double-

byte form, and the maximum VLC length is 16 bits. To

accommodate 12 bits for each of the input words, suitable for

VLC and VLI encoding in one byte production cycle, the

word_reg is set to have 32 bits, as shown below.

Figure 6. encoding process, VLI encoding process

In VLC encoding, the codeword generated from the lookup

table is sliced and added to `word_reg`. The bit position

within `word_reg` is determined based on the value stored in

`bit_ptr`. If the value of `bit_ptr` exceeds 16 for one or both

data segments, the excess bits are shifted to form a byte,

which is then output. On the other hand, the VLC encoding

requires a lookup table, although the VLI codeword is

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 7

directly computed from the input and does not require a table

lookup[26]. However, after processing a data unit (DU), the

‘word_reg’ may still contain valid bits. Finally, in the last step

for making sure that the bit stream results in 16 bits, the least

significant bits are filled with zeros depending on the number

that is needed to get to 16. Simultaneously, the `end_reg`

register is updated to record the effective bits of the lastest

data. The information about the last byte is the necessary data

required by the bitstream recombination module in the further

step [27]. The architecture framework for both Huffman

encoding methods is illustrated in Figure 4 below. It includes

two Huffman encoding units and a single Huffman lookup

table. The next table specifies the VLC codewords

corresponding to each Run Length and Size values Figure 3

shows the lookup table for VLC codewords. The Huffman

encoder processes both VLC and VLI codewords and stores

the results in `FIFO0` and `FIFO1`. Alongside these results,

valid signals (`Rd_en0` and `Rd_en1`) are used, as shown in

(Figure 6), to determine the output for Huffman Codeword 0

and Huffman Codeword 1.

Bitstream Recombination

Figure 1. The structure of the dual Huffman encoding.

Figure 2. The bitstream recombination module

The (Figure. 8) shows that a shift register, termed as

Shift_reg, is used for combining Huffman Code0 and

Huffman Code1. For the purpose of requesting outputs from

FIFO0 and FIFO1 as illustrated in Figure 5 above, the read

FIFO controller module creates output signals known as

Rd_en0 and Rd_en1. These read-valid signals are provided to

the FIFOs to decode Huffman code words found in the

Huffman tree. Every time the recombination occurs, the

micro program begins to load simultaneously with the

Shift_reg and the effective bit count becomes zero. For

Huffman Codeword0, it simply outputs the value of the FIFO.

In Huffman Codeword1 structure, the data is more often than

not shifted as well as the output only merges. The next step

after the Huffman encoding process is the position process:

whether all data are combined or not, there must be an

examination about whether there are still more valid bits

remaining in Shift_reg or not. When any extra bits are there,

the status information of the last data is available through

State_reg.

RESULT AND DISCUSSION

The fast Huffman encoding method as described in this

paper has also been tested on a hardware system. The

simulation of the present design was carried out using the

Xilinx Zynq7035 pcba, and the hardware design was

implemented using the Xilinx Vivado 2017.2 tool. After

providing the synthesis of Huffman encoding based on the

proposed approach, a comparison of the results with related

works is presented in (Table 5).

Table 5. Compare Huffman Encoding in Different Articles

Category / Device Device Frequency

(Hz)

LUTs Number of

Cycles

Time

(ns)

Throughput

(Mbit/s)

Proposed (Zynq 7035) [28] Zynq 7035 200M 624 64 320 6400

Zynq 7020 [29] Zynq 7020 173M 761 448 2590 2372.2

CPU [30] CPU 2G -- 256 -- --

Virtex Ultrascale [31] Virtex Ultrascale 250M 42052 256 1024 2000

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 8

Graph 1. Comparison of Throughput (Mbit/s) and

Frequency (Hz) Across Different Devices

As indicated in (Table. 5, Graph. 1), the resource

consumption in Huffman encoding in other approaches is

higher as compared to the fast Huffman encoding technique

proposed herein. This is because existing approaches involve

implementations on the Central Processing Unit (CPU), and

these consume many clock cycles but take little processing

time. Experiments shown in this paper show that the

identified Huffman encoding maximally enhances

throughput and processing time. As a result, the Huffman

encoding method described in this work has the following

benefits and achieves a non-blocking JPEG compression

process as shown in (Table. 6).

Table 6. Overview of Compression, Encryption, and Decompression Processes

Section Subsection Description

Data Compression

Using Huffman

Encoding [32], [33]

Frequency

Analysis

Determine how often each of the data elements such as text, numbers, pictures

exists in the knowledge database. If you wish to find characters or symbols that

appear most often in a given text, create a frequency table of the characters or

symbols.

Binary Tree

Construction

Construct a binary tree of the frequency table generatedFromFile frequencies:

Each node represents the record and the tree arrangement allows elements

frequently to be seen closer to the root.

Code

Generation

Encourage preparation and construction of distinctive divergent binary string

descriptions for each datum according to the binary tree. This decreases the amount

of data contained in the data set.

Compression

Process

Subsequently, apply Huffman coding to get a new data set that is less in size and

has subtle patterns hard to be identified.

Data Encryption

[34]

Selection of

Encryption

Algorithm

Select a well tested encryption standard (for instance Advanced Encryption

Standard, AES) proportional to the compressed data set.

Encryption

Process

Compress the data and than encrypt the compressed data according to chosen

algorithm. The encryption also guarantees that the encoded data is safe from an

external attempt either by force or by default.

Key

Management

For encryption keys, it is possible to adopt a key management best practice and

provide for proper security of the keys. This system should have ways of creating

and distributing them, storing them and regularly changing them to improve

security.

Decompression and

Decryption [35]

Decryption

Process

When the access to the data is needed first, decrypt the compressed data through

decryption algorithm to be used.

Decompression

Process

Here, Huffman decoding must be used to try to get the original data back from the

decrypted compressed dataset.

The proposed model has several desirable features:

increasing the compression and encryption of data and

subsequently reducing storage and transmission needs, as

well as improving efficiency in the processing. In this way,

the model meets the security and performance requirements

for knowledge databases in combination with these

techniques [36]. The (Table 7) highlights three key system

features: There are benefits known as security, efficiency, and

resource utilization that have been enhanced. Enhanced

security in the database compresses and encrypts the manner

in which data patterns are ensured so that any unauthorized

persons do not access them. Efficiency improvement is one

of the pre-encryption processing methods that helps you

preserve time when shrinking the data size that has been

observed as time-consuming. Last, optimization of storage

and bandwidth is achieved by optimal resource utilization,

making it suitable for large datasets in situations where

resources are limited. These features make the system secure,

scalable, and efficient for arising modern apps.

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 9

Table 7. Key Features and Benefits of the Proposed Model

Feature Description

Enhanced

Security

Through combining compression and

encryption the model hides data

patterns and has a strong defence

against the unauthorized access.

Efficiency

Improvement

Whenever the data is huge, it is

compressed in order to minimize the

amount of computation that must be

done to encrypt the data and enhance

the rate of processing.

Optimal

Resource

Utilization

The model is efficient for storage

requirement and bandwidth hence

suitable for large dataset environments.

From the (Table.8), it can be concluded that, the model has

significant advantages, given certain limitations. The

combined processes of compression with encryption may be

a problem to implement because they are more complex and

may demand more resources. However, the effectiveness of

the model depends on the peculiarity of the data and the

knowledge database used [37], [38].

Table 8. Challenges and Solutions in Huffman Coding

Implementation

Challenge Details Ponder Points

Dynamic

Data

Management

Specifically, the model

may require

modification in

scenarios where

databases have data

that changes often.

This could be

resolved through

implementation of

adaptive Huffman

coding.

Finally, do look

into the

adaptive

Huffman

coding to add

flexibility in

the system.

Overhead of

Huffman

Tree

The cost of

transmitting the

Huffman tree can be

accommodated by

comes in the form of

optimally pre-defining

Huffman trees for

often used datasets.

Fixed Huffman

trees should be

applied to

frequently used

data sets.

Figure 9. Real-World Applications of Enhanced Data

Security Using Fast Huffman Encoding and Encryption

Techniques

Real World Application

The paper depicts (Figure .8) applicability in various fields.

In healthcare, it guarantees the safe storage and transfer of

highly confidential EHRs besides efficient storage. For

cloud computing, it offers security features for data at rest and

data in transit. Both the financial and e-commerce sectors

benefit because transaction data and customer information are

protected better and take up less storage space. This approach

is used in government and military systems that provide

security to classified information as well as in efficient

database systems. In IoT ecosystems, it plays the role of

authenticating the parties involved and encrypting and

compressing data for transmission. It can be used by the

institutions of learning to protect invention and research data

sets. It also helps enterprises in the analysis of Big data since

it provides secure storage of big data sets. Moreover, it

improves blockchain and cryptocurrency systems by

safeguarding records of transactions and at the same time, the

approach is cost-effective to store.

CONCLUSION

This paper proposes a new model in order to improve data

protection in knowledge databases by using data compression

via Huffman encoding and then encryption. By comparison,

with the proposed model, data security is enhanced while

adopting less storage space, less communication overhead,

and faster processing time. This leads to the conclusion that

additional work will be dedicated to the enhancement of this

model and the investigation of other application domains for

which this approach can be useful. The fast Huffman

encoding architecture described in this paper is developed

onto an FPGA, which uses the Xilinx Zynq7035 with a

working frequency of 200 MHz. Firstly, the work delves into

the main concepts and organization of Huffman encoding

with the use of two-speed encoding structures and byte

https://technoaretepublication.org/computer-applications/index.php

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 10

recombination in order to reduce the number of cycles used

in processing. As shall be seen from the experimental results,

although the method employs some LUTs, it obtains fewer

clock cycles than the existing method, thus making real-time

encoding in the JPEG compression possible. In this work, an

adaptive fast Huffman encoding technique is used. The multi-

MSBs of non-reference pixels are predicted by MED and

GAP, jointly embedded into a loop. Following this, adaptive

Huffman coding is performed on all the bits in the order of

the highest to the lowest order for the original as well as the

predicted pixel intensities. The image is then encrypted by a

stream cipher, and secret data is inserted into the spare area

by multi-MSB substitution. New experimental outcomes

illustrate that this method—regarding combined MED+GAP

predicting and adaptive Huffman coding—provides larger

embedding capacity than similar methods and assures the

same level of robust security and reversibility. This

pioneering approach demonstrates that adaptive encoding

schemes, in theory, can be easily optimized for both mass

compression and superior safety while achieving high speed.

FUTURE WORK

The proposed research will also design the model for a

wide range of knowledge databases to check the model’s

flexibility in many situations. A qualitative research study

will be done with the aim of assessing various factors that

comprise the above theoretical model in the study, and these

may include the level of compression ratio and the enhanced

security achieved through the encryption and decryption

exercise. Besides, the thesis will explore the application of

other forms of compression to the model with an aim of

improving resource utilization and performance on large and

complex data sets. This multi-faceted endeavour aims to

legitimize the model as a viable, confidentiality-preserving

solution for banking data storage.

REFERENCES

[1] S. Lysenko, K. Bobrovnikova, R. Shchuka, and O. Savenko,

“A Cyberattacks Detection Technique Based on Evolutionary

Algorithms,” 2020 IEEE 11th International Conference on

Dependable Systems, Services and Technologies (DESSERT),

May 2020, doi:

https://doi.org/10.1109/dessert50317.2020.9125016.

[2] D. Liu, P. An, R. Ma, W. Zhan, X. Huang, and Ali Abdullah

Yahya, “Content-Based Light Field Image Compression

Method With Gaussian Process Regression,” IEEE

Transactions on Multimedia, vol. 22, no. 4, pp. 846–859, Mar.

2020, doi: https://doi.org/10.1109/tmm.2019.2934426.

[3] K. R. Raghunandan, Radhakrishna Dodmane, K. Bhavya, K.

Rao, and A. K. Sahu, “Chaotic-Map Based Encryption for 3D

Point and 3D Mesh Fog Data in Edge Computing,” IEEE

Access, vol. 11, pp. 3545–3554, Dec. 2022, doi:

https://doi.org/10.1109/access.2022.3232461.

[4] C. Bhatt, C. Tiwari, B. S. Thalal, A. Vishnoi, K. Joshi, and T.

Singh, “Secured Multi-Platform Communication Application

Using Advanced Encryption Standard Algorithm,” 2024 10th

International Conference on Advanced Computing and

Communication Systems (ICACCS), pp. 483–487, Mar. 2024,

doi: https://doi.org/10.1109/icaccs60874.2024.10716832.

[5] B. Kumari, N. K. Kamal, A. M. Sattar, and M. K. Ranjan,

“Adaptive Huffman Algorithm for Data Compression Using

Text Clustering and Multiple Character Modification,”

RECENT TRENDS IN PROGRAMMING LANGUAGES,

vol. 10, no. 1, pp. 30–40, May 2023, doi:

https://doi.org/10.37591/rtpl.v10i1.509.

[6] MVS Srimanth and Ravi Kumar Jatoth, “Implementation

Challenges and Performance Analysis of Image Compression

Using Huffman Encoding and DCT Algorithm on DSP

Processor TMS320C6748 and Arduino Nano 33 BLE,” vol. 5,

pp. 1–6, Feb. 2024, doi:

https://doi.org/10.1109/sceecs61402.2024.10481684.

[7] D. Castro, B. Leite, and Cleber Zanchettin, “An End-to-End

Approach for Handwriting Recognition: From Handwritten

Text Lines to Complete Pages,” pp. 264–273, Jun. 2024, doi:

https://doi.org/10.1109/cvprw63382.2024.00031.

[8] J. Tekli, “An Overview on XML Semantic Disambiguation

from Unstructured Text to Semi-Structured Data:

Background, Applications, and Ongoing Challenges,” IEEE

Transactions on Knowledge and Data Engineering, vol. 28,

no. 6, pp. 1383–1407, Jun. 2016, doi:

https://doi.org/10.1109/tkde.2016.2525768.

[9] S. Prasad and Y. Sreenivasa Rao, “Designing Secure Data

Storage and Retrieval Scheme in Cloud-Assisted Internet-of-

Drones Environment,” IEEE Internet of Things Journal, pp.

1–1, Jan. 2024, doi:

https://doi.org/10.1109/jiot.2023.3337265.

[10] Wahyu Sardjono, Desi Maya Kristin, and Gustian Rama Putra,

“Model of Customer Relationship Management Systems

Evaluation Using Factor Analysis,” Aug. 2023, doi:

https://doi.org/10.1109/icimtech59029.2023.10277947.

[11] A. R. Hakim, K. Ramli, T. S. Gunawan, and S. Windarta, “A

Novel Digital Forensic Framework for Data Breach

Investigation,” IEEE Access, vol. 11, pp. 1–1, 2023, doi:

https://doi.org/10.1109/access.2023.3270619.

[12] Y.-T. Pai, F.-C. Cheng, S.-P. Lu, and S.-J. Ruan, “Sub-Trees

Modification of Huffman Coding for Stuffing Bits Reduction

and Efficient NRZI Data Transmission,” IEEE Transactions

on Broadcasting, vol. 58, no. 2, pp. 221–227, Jun. 2012, doi:

https://doi.org/10.1109/tbc.2012.2189610.

[13] I. Timokhin and F. Ivanov, “Fast Polar Decoding With

Successive Cancellation List Creeper Algorithm,” IEEE

Access, vol. 12, pp. 86639–86648, 2024, doi:

https://doi.org/10.1109/access.2024.3416826.

[14] Y.-T. Pai, F.-C. Cheng, S.-P. Lu, and S.-J. Ruan, “Sub-Trees

Modification of Huffman Coding for Stuffing Bits Reduction

and Efficient NRZI Data Transmission,” IEEE Transactions

on Broadcasting, vol. 58, no. 2, pp. 221–227, Jun. 2012, doi:

https://doi.org/10.1109/tbc.2012.2189610.

[15] J. Meng, L. Liu, Y. Liu, and N. Wang, “WD: A Sliding

Window based Time Series compression algorithm,” vol. 17,

pp. 148–152, Dec. 2023, doi:

https://doi.org/10.1109/mlbdbi60823.2023.10482339.

[16] B. Lian et al., “Trusted Location Sharing on Enhanced

Privacy-Protection IoT Without Trusted Center,” IEEE

Internet of Things Journal, vol. 11, no. 7, pp. 12331–12345,

Nov. 2023, doi: https://doi.org/10.1109/jiot.2023.3336337.

[17] S. More, Vrinda Sanivarapu, Y. Sharma, Ved Milind Thigale,

and M Suguna, “Enhancing Data Compression: A Dynamic

Programming Approach with Huffman Coding and Burrows-

Wheeler Transform,” vol. 52, pp. 82–88, Dec. 2023, doi:

https://doi.org/10.1109/icacrs58579.2023.10404627.

https://technoaretepublication.org/computer-applications/index.php
https://doi.org/10.1109/dessert50317.2020.9125016
https://doi.org/10.1109/tmm.2019.2934426
https://doi.org/10.1109/access.2022.3232461
https://doi.org/10.1109/icaccs60874.2024.10716832
https://doi.org/10.1109/sceecs61402.2024.10481684
https://doi.org/10.1109/cvprw63382.2024.00031
https://doi.org/10.1109/tkde.2016.2525768
https://doi.org/10.1109/jiot.2023.3337265
https://doi.org/10.1109/icimtech59029.2023.10277947
https://doi.org/10.1109/access.2023.3270619
https://doi.org/10.1109/tbc.2012.2189610
https://doi.org/10.1109/access.2024.3416826
https://doi.org/10.1109/tbc.2012.2189610
https://doi.org/10.1109/mlbdbi60823.2023.10482339
https://doi.org/10.1109/jiot.2023.3336337
https://doi.org/10.1109/icacrs58579.2023.10404627

Technoarete Transactions on Advances in Computer Applications (TTACA)

Volume 3, Issue 3, September 2024

e-ISSN: 2583-3472

 11

[18] W. Wang and W. Zhang, “Huffman Coding-Based Adaptive

Spatial Modulation,” IEEE Transactions on Wireless

Communications, vol. 16, no. 8, pp. 5090–5101, Aug. 2017,

doi: https://doi.org/10.1109/twc.2017.2705679.

[19] S. A. Ramprashad, “The multimode transform predictive

coding paradigm,” IEEE Transactions on Speech and Audio

Processing, vol. 11, no. 2, pp. 117–129, Mar. 2003, doi:

https://doi.org/10.1109/tsa.2003.809195.

[20] Eiji Kasutani and A. Yamada, “The MPEG-7 color layout

descriptor: a compact image feature description for high-speed

image/video segment retrieval,” International Conference on

Image Processing, Oct. 2001, doi:

https://doi.org/10.1109/icip.2001.959135.

[21] J. Zepeda, C. Guillemot, and E. Kijak, “Image Compression

Using Sparse Representations and the Iteration-Tuned and

Aligned Dictionary,” vol. 5, no. 5, pp. 1061–1073, Apr. 2011,

doi: https://doi.org/10.1109/jstsp.2011.2135332.

[22] T. Kumaki et al., “CAM-based VLSI Architecture for

Huffman Coding with Real-time Optimization of the Code

Word Table,” pp. 5202–5205, Jul. 2005, doi:

https://doi.org/10.1109/iscas.2005.1465807.

[23] A. Gupta, M. C. Srivastava, S. D. Pandey, and V. Bhandari,

“Modified Runlength Coding for Improved JPEG

Performance,” International Conference on Information and

Communication Technology, vol. 23, pp. 235–237, Mar.

2007, doi: https://doi.org/10.1109/icict.2007.375383.

[24] G. Baruffa, Pisana Placidi, A. D. Salvo, S. Marconi, and A.

Paterno, “An Improved Algorithm for On-Chip Clustering and

Lossless Data Compression of HL-LHC Pixel Hits,” Nov.

2018, doi: https://doi.org/10.1109/nssmic.2018.8824281.

[25] J. Li, G. AlRegib, D. Tian, P. S. Chang, and W. H. Chen,

“Three-dimensional position and amplitude VLC coding in

H.264/AVC,” 2008 15th IEEE International Conference on

Image Processing, pp. 2488–2491, 2008, doi:

https://doi.org/10.1109/icip.2008.4712298.

[26] L. S. Ajay and Sreenidhi Prabha Rajeev, “Comparative

Analysis of Data Compression using Canonical Huffman and

Golomb Rice Encoding in Verilog HDL and Implementation

in FPGA,” Jul. 2023, doi:

https://doi.org/10.1109/icccnt56998.2023.10306693.

[27] F. Shang, Q. Ding, R. Du, M. Cao, and H. Chen, “Construction

and Application of the User Behavior Knowledge Graph in

Software Platforms,” Journal of Web Engineering, Mar. 2021,

doi: https://doi.org/10.13052/jwe1540-9589.2027.

[28] J. Kang and S.-J. Buu, “Graph Anomaly Detection With

Disentangled Prototypical Autoencoder for Phishing Scam

Detection in Cryptocurrency Transactions,” IEEE Access, vol.

12, pp. 91075–91088, Jan. 2024, doi:

https://doi.org/10.1109/access.2024.3419152.

[29] J. Radhakrishnan, S. Sarayu, K. George Kurian, D. Alluri, and

R. Gandhiraj, “Huffman coding and decoding using Android,”

Apr. 2016, doi: https://doi.org/10.1109/iccsp.2016.7754156.

[30] Janarbek Matai, J.-Y. Kim, and R. Kastner, “Energy efficient

canonical huffman encoding,” Jun. 2014, doi:

https://doi.org/10.1109/asap.2014.6868663.

[31] Ramez Moh. Elaskary, M. Saeed, T. Ismail, H. Mostafa, and

Salam Gabran, “Hybrid DCT/Quantized Huffman

compression for electroencephalography data,” vol. 2, pp.

111–114, Dec. 2017, doi: https://doi.org/10.1109/jec-

ecc.2017.8305790.

[32] J. Choi, B. Kim, H. Kim, and H.-J. Lee, “A High-Throughput

Hardware Accelerator for Lossless Compression of a DDR4

Command Trace,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 27, no. 1, pp. 92–102, Jan.

2019, doi: https://doi.org/10.1109/tvlsi.2018.2869663.

[33] Y. Yu, Z. Zhao, S.-J. Lin, and W. Li, “Accelerating Huffman

Encoding Using 512-Bit SIMD Instructions,” IEEE

Transactions on Consumer Electronics, vol. 70, no. 1, pp. 554–

563, Dec. 2023, doi:

https://doi.org/10.1109/tce.2023.3347229

[34] F. Shang, Q. Ding, R. Du, M. Cao, and H. Chen, “Construction

and Application of the User Behavior Knowledge Graph in

Software Platforms,” Journal of Web Engineering, Mar. 2021,

doi: https://doi.org/10.13052/jwe1540-9589.2027

[35] J. Haghighat, W. Hamouda, and M. R. Soleymani, “Lossless

Source Coding Using Nested Error Correcting Codes,” IEEE

Transactions on Signal Processing, vol. 55, no. 6, pp. 2583–

2592, Jun. 2007, doi: https://doi.org/10.1109/tsp.2007.893934

[36] D. Puthal, X. Wu, N. Surya, R. Ranjan, and J. Chen, “SEEN:

A Selective Encryption Method to Ensure Confidentiality for

Big Sensing Data Streams,” IEEE Transactions on Big Data,

vol. 5, no. 3, pp. 379–392, Sep. 2019, doi:

https://doi.org/10.1109/tbdata.2017.2702172

[37] R. Gupta, “Lossless Compression Technique for Real-Time

Photoplethysmographic Measurements,” IEEE transactions

on instrumentation and measurement, vol. 64, no. 4, pp. 975–

983, Apr. 2015, doi:

https://doi.org/10.1109/tim.2014.2362837

[38] D. Yunge, S.-Y. Park, P. H. Kindt, and S. Chakraborty,

“Dynamic Alternation of Huffman Codebooks for Sensor Data

Compression,” IEEE Embedded Systems Letters, vol. 9, no. 3,

pp. 81–84, Sep. 2017, doi:

https://doi.org/10.1109/les.2017.2714899

https://technoaretepublication.org/computer-applications/index.php
https://doi.org/10.1109/twc.2017.2705679
https://doi.org/10.1109/tsa.2003.809195
https://doi.org/10.1109/icip.2001.959135
https://doi.org/10.1109/jstsp.2011.2135332
https://doi.org/10.1109/iscas.2005.1465807
https://doi.org/10.1109/icict.2007.375383
https://doi.org/10.1109/nssmic.2018.8824281
https://doi.org/10.1109/icip.2008.4712298
https://doi.org/10.1109/icccnt56998.2023.10306693
https://doi.org/10.13052/jwe1540-9589.2027
https://doi.org/10.1109/access.2024.3419152
https://doi.org/10.1109/iccsp.2016.7754156
https://doi.org/10.1109/asap.2014.6868663
https://doi.org/10.1109/jec-ecc.2017.8305790
https://doi.org/10.1109/jec-ecc.2017.8305790
https://doi.org/10.1109/tvlsi.2018.2869663
https://doi.org/10.1109/tce.2023.3347229
https://doi.org/10.13052/jwe1540-9589.2027
https://doi.org/10.1109/tsp.2007.893934
https://doi.org/10.1109/tbdata.2017.2702172
https://doi.org/10.1109/tim.2014.2362837
https://doi.org/10.1109/les.2017.2714899

	INTRODUCTION
	RELATED STUDY
	PROBLEM STATEMENT
	HUFFMAN ENCODING ALGORITHM
	PROPOSED MODEL
	RESULT AND DISCUSSION
	CONCLUSION
	FUTURE WORK
	REFERENCES

