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Abstract 

The protection of biometric systems from presentation attacks involving printed photos, video replays and 3D masks depends on face 
anti-spoofing technology. A novel proposed work based on Graph Neural Networks (GNNs), Transformer-based feature extraction 
alongside Reinforcement Learning (RL) enables dynamic multi-modal (RGB, depth, infrared) data fusion for advanced spoof detection. The 
Proposed work executes three interconnected components which include GNN for complex inter-modal relationship understanding and 

Transformers for global dependency detection and RL for real-time fusion strategy optimization. The proposed work shows superior 
performance across three popular datasets including CASIA-SURF, Replay-Attack, and OULU-NPU by achieving Half Total Error Rates 
(HTER) of 6.9%, 9.8% and 6.2% respectively while producing results better than existing methods by a wide margin of 3.2%. Ablation tests 
prove the significant contribution of GNNs to the system by revealing a 1.8% HTER increase but RL enables the system to function with 0.6% 
worse results. The proposed work demonstrates 3.9% Attack Presentation Classification Error Rate (APCER) and 3.8% Bona Fide 
Presentation Classification Error Rate (BPCER) on CASIA-SURF along with a 3.9% ACER which proves its ability to detect various attack 
types. The study demonstrates how using relational modeling with global context learning and adaptive fusion efficiently supports secure 
face authentication processes. 
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INTRODUCTION 

Face recognition technology is already a crucial part of 

contemporary security infrastructure, allowing for uses in 

anything from border control to smartphone identification 

[1]. Nevertheless, these systems are still susceptible to 

presentation attacks (PAs), in which adversaries circumvent 

authentication by using falsified artifacts such printed 

photographs, video replays, or 3D masks [2]. Static feature 

fusion tactics and limited cross-modal interaction modeling 

limit robustness against changing attack types, even with 

improvements in single-modal anti-spoofing techniques [3]. 

To identify spoofing cues in RGB photos, conventional 

techniques use shallow neural networks or manually created 

features (such as Local Binary Patterns [4]). Multi-modal 

methods that combine RGB, depth, and infrared (IR) data 

enhance detection [5], but they frequently use fixed fusion 

rules (such weighted averaging) that are unable to adjust to 

changes in the input [6]. Recent research has investigated. 

Recent research has investigated attention processes [7] and 

graph-based fusion [8] to mitigate these constraints; 

nonetheless, the dynamic optimization of fusion techniques 

remains little examined.  

This paper introduces a novel architecture that integrates 

Graph Neural Networks (GNNs), Transformer-based feature 

extraction, and Reinforcement Learning (RL) to address 

these shortcomings. Modality-specific Vision Transformers 

(ViTs) [9] first extract high-dimensional features from RGB, 

depth, and infrared inputs, effectively capturing global 

contextual connections. Secondly, a Graph Neural Network 

(GNN) illustrates interactions across modalities as a graph, 

with nodes representing the modalities and edges indicating 

their complimentary connections. Thirdly, a reinforcement 

learning agent dynamically modifies fusion weights based on 

real-time input characteristics, thereby guaranteeing 

adaptability across various assault situations. 

The primary contributions are as follows: 

1. GNN-Driven Modality Interaction: A graph-based 

fusion mechanism that clearly demonstrates the 

dependency of modalities, beyond the constraints of 

conventional concatenation or averaging techniques. 

2. Transformer-Enhanced Feature Extraction: Vision 

Transformers (ViTs) effectively capture broad spatial 

correlations across several modalities, hence 

improving discriminative feature learning. 

3. RL-Optimized Dynamic Fusion: A reinforcement 

learning agent systematically modifies fusion weights, 

resulting in a 3.2% reduction in the Half Total Error 

Rate (HTER) when compared to static fusion 

methodologies.  

Experiments conducted on the CASIA-SURF [10], 

Replay-Attack [11], and OULU-NPU [12] datasets exhibit 

exemplary performance, while ablation studies substantiate 

the essentiality of each component. For example, the 

exclusion of Graph Neural Networks (GNNs) results in an 

increase of 1.8% in the Human Translation Error Rate 
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(HTER), whereas the deactivation of Reinforcement 

Learning (RL) leads to a decline in performance by 0.6%.  

The subsequent sections of this paper are structured as 

follows: Section II examines pertinent literature, Section III 

delineates the methodology, Section IV elucidates the 

experimental procedures, and Section V provides a 

conclusion to the study. 

LITERATURE REVIEW 

This section consolidates significant advancements within 

these domains, with a particular focus on publications in 

IEEE venues from 2021 onwards, while also highlighting 

outstanding challenges that remain unaddressed. 

Multi-modal fusion has become a fundamental component 

in the development of effective counterfeit detection 

methodologies. [13] introduced a hybrid CNN architecture to 

integrate RGB and depth maps, achieving a 9.8% HTER on 

the CASIA-SURF dataset. Nevertheless, their dependence on 

late fusion constrained cross-modal interaction throughout 

the feature extraction process. In response to this issue, [14] 

employed spatial attention mechanisms to amalgamate 

infrared and depth data, thereby achieving a reduction in Half 

Total Error Rate (HTER) to 8.4% on the OULU-NPU dataset. 

[15] introduced an adaptive fusion method utilizing learnable 

weights; however, they did not successfully implement a 

mechanism to dynamically modify strategies in accordance 

with the characteristics of the input data. Concurrently, 

graph-based methodologies have garnered increasing 

attention for the purpose of modeling relational 

dependencies. Liu et al. [4] adapted graph neural networks 

(GNNs) to single-modal anti-spoofing by representing facial 

regions as graph nodes, achieving a 7.9% HTER on 

Replay-Attack. In their study, [16] conceptualized 

multi-spectral images as graphs for multi-modal tasks; 

however, they neglected to incorporate dynamic edge 

weighting to account for inter-modal relationships. [17] 

advanced Graph Neural Networks (GNNs) to integrate 

electroencephalogram (EEG) and visual data for the purpose 

of emotion recognition, achieving a 12% enhancement 

compared to traditional methodologies; however, their 

research did not encompass the issue of counterfeit detection. 

Vision Transformers (ViTs) have revolutionized the 

process of feature extraction by effectively capturing global 

dependencies. [18] were the pioneers of Vision Transformers 

(ViTs) for the purpose of image classification, which 

subsequently inspired modifications in the domain of 

anti-spoofing. [19] employed ViTs for RGB-depth fusion, 

achieving a 7.1% HTER on CASIA-SURF. [20] enhanced 

this by integrating spatial-channel attention with ViTs, 

reducing HTER to 6.8% on OULU-NPU. Notwithstanding 

these advancements, static fusion rules continue to represent 

a significant limitation, as observed by [21], who emphasized 

the necessity for adaptation tailored to specific inputs. 

Reinforcement learning (RL) has developed as a method to 

dynamically optimize fusion strategies. Kumar et al. [21] 

employed Q-learning to optimize the weights for 

RGB-thermal fusion, resulting in an HTER of 10.2% on the 

Replay-Attack dataset. [22] integrated reinforcement 

learning with spatiotemporal attention for video-based 

detection; however, they encountered substantial 

computational expenses. [23] adapted RL to sensor fusion in 

chaotic environments, emphasizing its potential for real-time 

adaptability. Beyond RL, self-supervised learning has 

enhanced generalization. [24] employed pre-training of 

models through contrastive learning on unlabeled 

multi-modal data, resulting in a 2.1% reduction in HTER on 

the CASIA-SURF dataset. In the context of few-shot 

scenarios, [25] introduced a meta-learning approach aimed at 

identifying previously unencountered attacks. This 

methodology attained a Half Total Error Rate (HTER) of 

12.3% utilizing limited data; however, it encountered 

challenges when applied in cross-domain environments. 

Adversarial robustness has also been prioritized to counter 

evasion attacks [26] integrated adversarial training with 

multi-modal fusion, resulting in an enhancement of 

robustness by 18% on adversarial benchmarks. [27] utilized 

gradient masking as a defensive strategy against 

perturbation-based assaults; however, this approach resulted 

in a compromise in the accuracy of clean data. Temporal 

modeling, particularly for video-based counterfeit detection, 

has seen progress through 3D CNNs. [28] conducted an 

analysis of RGB-D video sequences utilizing 

three-dimensional convolutions, resulting in a Half Total 

Error Rate (HTER) of 9.1% on the SiW-M dataset. However, 

the intricacy of their model impeded its implementation in 

real-time applications [29] 

Research Gaps: Notwithstanding advancements, 

significant limitations remain: (1) Static fusion rules [13] 

[14] [15] exhibit a deficiency in adaptability to variations in 

input; (2) The superficial cross-modal interaction present in 

GNN-based methodologies [16] [17] [18] [19] neglects the 

significance of dynamic edge weighting; (3) The 

computational burden associated with reinforcement 

learning-driven frameworks [24] [25] [26] constrains their 

practical applicability; and (4) The generalization 

shortcomings inherent in few-shot learning approaches [17] 

impede performance across diverse domains. Our framework 

addresses these voids through dynamic GNNs for 

inter-modal interaction, ViTs for global feature extraction, 

and lightweight RL for real-time fusion optimization. 

METHODOLOGY 

The suggested technique tackles the issue of presentation 

assault detection by synergistically integrating graph-based 

relational reasoning, global context modeling, and adaptive 

decision fusion. Conventional anti-spoofing methods often 

encounter difficulties with cross-modal feature interactions 

and static fusion techniques, hence limiting their resilience 

against advanced assaults. To address these constraints, the 

framework integrates three fundamental innovations: (1) a 

graph neural network (GNN) that explicitly represents 

non-linear relationships among RGB, depth, and infrared 
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modalities, (2) a Transformer architecture that captures 

extensive spatial dependencies within each modality, and (3) 

a reinforcement learning (RL) agent that adaptively 

optimizes fusion weights according to real-time input 

characteristics. This tripartite framework facilitates 

hierarchical feature learning by concurrently using local 

modality-specific patterns, inter-modal correlations, and 

global contextual signals to differentiate authentic 

presentations from various assault types. The approach is 

meticulously tested by cross-dataset methods and ablation 

experiments to discern the contribution of each component. 

In figure 1, shows the pipeline of the proposed work with all 

the steps.  

Data Acquisition and Preparation  

The architecture is assessed using three benchmark 

datasets often used in face anti-spoofing research: 

1. CASIA-SURF [30]: Comprises 21,000 video 

sequences from 1,000 individuals, including 3 

modalities (RGB, depth, IR) and 7 assault kinds 

(printed picture, sliced photo, video replay, etc.). Data 

is collected under three lighting conditions and three 

image resolutions (640×480, 1280×720, 1920×1080).  

2. Replay-Attack [31]: Comprises 1,300 video clips 

including 50 subjects over 2 attack categories (print 

and digital replay), recorded under 3 lighting 

conditions (controlled, adverse, and daylight).  

3. OULU-NPU [32]: Consists of 5,940 movies with 55 

individuals using 6 presentation attack instruments 

(PAIs), such as 2D faces and high-resolution prints, 

captured with 3 distinct sensors.  

All datasets adhere to defined assessment protocols: 

Intra-dataset evaluation: 80-10-10 division for training, 

validation, and testing Cross-dataset validation: Train on two 

datasets and evaluate on a third Grandest protocol: Integrates 

all datasets with subject-disjoint partitions. Synchronization 

between modalities is accomplished by hardware 

timestamps, ensuring temporal alignment errors of less than 5 

ms. Data augmentation encompasses: Illumination 

fluctuation (±30% gamma adjustment) Spatial warping 

(elastic transformations with σ = 2.0) Modality dropout 

(randomly obscure one modality with a probability of 0.2). 

Preprocessing Stage 

The preprocessing pipeline standardizes multi-modal 

inputs to ensure a consistent feature representation, while 

preserving the distinctive indicators necessary for counterfeit 

detection. The raw data obtained from RGB cameras, depth 

sensors, and infrared (IR) detectors undergoes a sequence of 

five successive operations:  

Spatial Alignment  

Hardware timestamps synchronize modalities during the 

acquisition phase. Affine transformations employing bilinear 

interpolation align depth and infrared frames with RGB 

coordinates by utilizing twelve facial features identified by 

[33]. Transformation matrices are derived through 

least-squares optimization, effectively minimizing pixel 

displacement errors to less than 1.2 pixels across various 

modalities.  

Standardization  

RGB: Pixel values are standardized to the interval [0,1] 

through the application of min-max normalization for each 

individual channel.  

Depth measurements were converted to meters and 

subsequently normalized utilizing the dataset-specific mean 

(μ = 0.87) and variance (σ² = 0.14).  

Infrared (IR) images underwent normalization through the 

application of contrast-limited adaptive histogram 

equalization (CLAHE), utilizing a grid size of 8×8 and a 

clipping limit of 2.0.  

Modifying dimensions  

All modalities were resampled to a resolution of 256×256 

pixels utilizing bicubic interpolation. A hybrid down 

sampling methodology preserves high-frequency details: 

RGB: An anti-aliasing filter characterized by a cutoff 

frequency of 0.8 times the Nyquist frequency. Depth/IR: 

Employment of the Lanczos-3 kernel to mitigate spectral 

leakage. The preprocessed data is structured into 5-channel 

tensors (RGB:3, depth:1, IR:1) with batch-wise 

normalization. The pipeline reduces inter-modality variation 

by 37% in comparison to the unprocessed inputs, as 

evidenced by the Fréchet Inception Distance (FID=12.3, 

compared to a baseline of 19.6).  

Feature Extraction  

The suggested method employs three separate 

modalities—RGB, depth, and infrared—to derive 

complementing characteristics, thereby improving the 

efficacy of face anti-spoofing techniques. Each modality 

provides unique information: RGB imagery records texture 

and color, depth sensing offers three-dimensional structural 

information, and infrared technology uncovers subterranean 

attributes and thermal aspects. The modalities are processed 

individually using Vision Transformers (ViTs), which excel 

at collecting global dependencies in picture data due to their 

self-attention mechanism. 

The Concept Transformer derives feature embeddings Fi, 

For each technique Xi: 

Fi=ViT(Xi),i∈{RGB,Depth,IR}  (1) 

The Vision Transformer (ViT) partitions the input image 

into discrete sections, subsequently linearly embedding these 

segments. Here, Fi∈ Rd Fi∈Rd It then processes them 

through multiple layers of Transformer encoders to 

effectively capture global contextual information. denotes the 

feature vector of dimension d corresponding to the i-th 

modality. 
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Figure 1. The Pipeline of the Proposed work 

Graph Neural Network for Inter-Modal Relationship 

Modeling. 

To elucidate the interconnections among the modalities, a 

Graph Neural Network (GNN) is utilized, as shown in the 

figure 2 indicts Graph Neural Network. The features that 

have been extracted, = {FRGB, F Depth, FIR} are used to 

construct a graph G=(V, E)G=(V,E), where:  

Denotes the nodes associated with the modalities for V. 

Depicts the boundaries that encapsulate inter-modal links 

for E. 

The adjacency matrix, A is continuously calculated 

depending on the similarity of feature vectors: 

Aij=sim(Fi,Fj),where sim(Fi,Fj)=∥Fi∥∥Fj∥Fi⋅Fj  (2) 

 
Figure 2. Multi Model Fusion for indicts Graph Neural 

Network 

Classification 

The composite feature vector is analyzed using a fully 

connected classification layer to determine if the input 

depicts a legitimate face or a fraudulent effort. The 

classification is performed using a softmax function: 

y=softmax(WclsFfused+bcls)  (3) 

Algorithm 1: Pseudocode for the proposed work 

𝑦 ∈ {0,1}denotes the anticipated classification (0 for 

spoof, 1 for genuine). 

𝑊𝑐𝑙𝑠  and 𝑏𝑐𝑙𝑠  constitute the weights and bias of the 

classification layer. 

# Input: Multi-modal data (RGB, Depth, Infrared) 

def proposed_anti_spoofing_system (rgb, depth, 

infrared): 

# Step 1: GNN-based Inter-modal Relationship 

Modeling 

graph = construct_graph (rgb, depth, infrared) # Nodes: 

modalities; Edges: cross-modal interactions 

for layer in gnn_layers: 

graph = gnn_layer (graph, adjacency_matrix) # Update 

node features via message passing 

nonfeatures = graph. Nodes 

# Step 2: Transformer-based Global Dependency 

Extraction 

concatenated features = concatenate(nonfeatures) 

positional encoding = add_positional_encoding 

(concatenated features) 

transformer_output = transformer encoder (positional 

encoding, nomeids=8) # multi-head self-attention 

# Step 3: RL-driven Dynamic Fusion Optimization 

fusion agent = initialize_ppo_agent () # Proximal Policy 

Optimization (PPO) 

for episode in training epochs: 

state = transformer_output 

action = fusion agent. select action(state) # Fusion 

strategy (e.g., modality weights) 

fused_features = apply_fusion (action, state) 

reward = compute_reward (fused_features, ground truth) 

# Based on spoof detection accuracy 

fusion agent. update policy (reward, action) 

# Final Classification 

prediction = classifier(fused_features) 

return prediction 

# Helper Functions 

def construct_graph (rgb, depth, infrared): 

# Define nodes (modalities) and edges (interactions) 

nodes = [rgb, depth, infrared] 

adjacency_matrix = 

compute_cross_modal_similarity(nodes) 

return Graph (nodes, adjacency_matrix) 

def compute_reward (fused_features, y_true): 

y_pred = classifier(fused_features) 

accuracy = compare (y_pred, true) 

return accuracy # Reward: maximize detection 

accuracy 
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Training and Optimization  

Each component of the system, including Vision 

Transformers, GNN, and the classification layer, is trained 

end-to-end using the Adam optimizer with a learning rate of 

0.0001 and a batch size of 32. The loss function utilizes a 

weighted cross-entropy loss to mitigate class imbalance in 

the training dataset. The RL component is trained 

concurrently but autonomously, ensuring consistent learning 

for both the fusion method and the classification network. 

Measurements Metrices  

The effectiveness of the proposed system is evaluated 

using the following metrics:  

- Average Classification Error Rate (ACER): The 

average of the Attack Presentation Classification Error 

Rate (APCER) and the Bona Fide Presentation 

Classification Error Rate (BPCER). 

- Attack Presentation Classification Error Rate 

(APCER): Evaluates the error rate in detecting spoof 

assaults.  

- Half Total Error Rate (HTER): Evaluates the average 

of erroneous acceptance and incorrect rejection rates.  

- Bona Fide Presentation Classification Error Rate 

(BPCER): Evaluates the error rate in recognizing 

genuine faces. 

RESULTS AND DISCUSSION 

The advancement of facial anti-spoofing systems is 

essential in combating the increasing complexity of 

presentation assaults that use counterfeit items, including 

published images, video replays, and 3D masks, to 

circumvent biometric verification. Traditional methodologies 

often depend on inflexible fusion techniques and 

inadequately represent interactions among multi-modal data 

streams, impeding their capacity to adjust to evolving assault 

patterns. This study proposes an integrated framework that 

consolidates three complementary technologies: Graph 

Neural Networks (GNNs) for modeling inter-modal 

relationships, Transformer architectures for capturing global 

contextual patterns, and Reinforcement Learning (RL) for 

optimizing real-time data fusion strategies. By integrating 

these elements, the framework allows detailed analysis of 

multi-modal inputs (RGB, depth, infrared) while adaptively 

responding to new threats, thereby overcoming significant 

shortcomings of previous approaches.  

Experimental validation was conducted using a 

high-performance computer infrastructure including 

NVIDIA RTX 6000 GPUs, enabling fast training and 

inference for deep learning models. The solution used 

PyTorch 2.0 for fundamental neural network functions and 

the Deep Graph Library (DGL) to enable GNN-based 

relational modeling. Transformer components were created 

via Hugging Face’s Transformer library, while reinforcement 

learning rules were established through Stable Baselines3, 

for adaptive fusion decision-making. All processes were 

managed on a Linux-based cluster to provide scalable 

processing of multi-modal information. 

A thorough assessment included three benchmark datasets: 

CASIA-SURF (multi-modal assaults under differing 

lighting), Replay-Attack (low-resolution video 

reproductions), and OULU-NPU (high-fidelity 3D masks), 

together illustrating various attack methodologies and 

environmental contexts. Performance was evaluated using 

industry-standard metrics: Half Total Error Rate (HTER) to 

balance false acceptance and rejection rates, and Attack/Bona 

Fide Presentation Classification Error Rates (APCER/ 

BPCER) to measure attack detection accuracy and genuine 

user verification dependability. Ablation tests assessed the 

influence of individual framework components, while 

attack-specific analyses examined the consistency in 

identifying diverse threats. The findings demonstrate the 

framework's superiority over current approaches while 

highlighting its computing efficiency and operational 

stability, making it a viable option for practical biometric 

security applications.  

This section outlines the empirical validation of the 

framework, highlighting its technological advances, 

experimental rigor, and practical significance in enhancing 

secure authentication systems. 

Results of Three Datasets 

Result of CASIA-SURF 

The framework’s ability to generalize across attack types 

was evaluated on CASIA-SURF using APCER (attack 

detection rate) and BPCER (genuine user rejection rate), as 

shown in figure 3, The architecture exhibits consistent 

performance across various attack types, achieving an ACER 

of 3.9%. The low APCER values (e.g., 3.7% for printed 

photographs) signify great precision in spoof detection, 

whilst the negligible BPCER (3.8%) guarantees dependable 

identification of legitimate users. The uniformity across 

indicators highlights the framework's flexibility in addressing 

various threats, such as 3D masks and video replays. 

Results of Replay-Attack and OULU-NPU Datasets 

The framework's capacity to equilibrate attack detection 

precision with dependable authentic user verification is 

delineated in figure 3, which specifies error rates for video 

replay (Replay-Attack) and 3D mask (OULU-NPU) assaults 

and figure 4, shows the results of Replay-Attack and 

OULU-NPU Datasets The system attains an Attack 

Presentation Classification Error Rate (APCER) of 4.1% for 

video replays, demonstrating robust detection of 

low-resolution spoofing despite motion blur and compression 

artifacts, while sustaining a Bona Fide Presentation 

Classification Error Rate (BPCER) of 3.7%, thereby 

minimizing interference for legitimate users. The Average 

Classification Error Rate (ACER) of 3.9% indicates a nearly 

ideal balance between security and usability. In the 

OULU-NPU dataset, intended for high-fidelity 3D mask 

assaults, the framework exhibits similar resilience, achieving 

an APCER of 4.0% and a BPCER of 3.9%, resulting in a 
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balanced ACER of 4.0%. These measures demonstrate 

uniform performance across many attack types, even when 

masks replicate realistic materials or lighting conditions. 

Figure 3. Results of different metrices on CASIA-SURF 

dataset 

 
Figure 4. Results of Replay-Attack and OULU-NPU 

Datasets 

The absence of columns for printed picture assaults 

indicates that the databases prioritize video and 3D mask 

threats. The findings highlight the framework's flexibility: 

Transformers are proficient in detecting temporal 

discrepancies in video replays (e.g., unnatural face 

movements), but GNNs associate depth and infrared 

irregularities to mitigate 3D mask deception. The system 

demonstrates its practical applicability in real-world 

applications by sustaining low mistake rates across both 

attack types, where balancing security and user ease is 

essential. 

Comparison with State of the Art Methods  

The proposed method represents a substantial 

improvement over current state-of-the-art techniques across 

three benchmark datasets—CASIA-SURF, Replay-Attack, 

and OULU-NPU—exhibiting enhanced efficacy in 

identifying various presentation assaults as shown in the 

figure 5. On CASIA-SURF, which integrates multi-modal 

assaults (printed images, video replays, and 3D masks) under 

varying illumination, the framework attains an HTER of 

6.9% and an ACER of 3.9%, surpassing previous techniques 

by margins of 1.3–5.2% (HTER) and 3.2–7.3% (ACER) [34]. 

This enhancement arises from the synergistic amalgamation 

of Graph Neural Networks (GNNs) and Transformers, which 

collaboratively tackle two significant shortcomings of 

traditional methods: (1) the incapacity to model cross-modal 

dependencies (e.g., linking RGB texture anomalies with 

depth irregularities) and (2) the oversight of global contextual 

patterns (e.g., unnatural lighting gradients). The use of 

Reinforcement Learning (RL) significantly improves 

flexibility by dynamically prioritizing modalities like as 

infrared under difficult illumination conditions, a feature 

lacking in the static fusion methods employed by previous 

studies. 

The framework attains an HTER of 9.8% for 

Replay-Attack, concentrating on low-resolution video 

replays, exceeding the performance of the next-best 

technique (Transformer Fusion) [35] by 1.2%. This finding 

underscores the efficacy of Transformer-based temporal 

analysis in detecting nuanced discrepancies, such as stiff face 

movements or strange blinking patterns in repeated films. 

Simultaneously, RL-driven fusion reduces dependence on 

RGB data, which is susceptible to noise from motion blur, by 

adaptively prioritizing infrared signals (e.g., screen glare 

artifacts). These advances tackle the dataset's distinct issues, 

since conventional approaches often fail owing to excessive 

reliance on single-modality analysis. 

The system demonstrates resilience against high-fidelity 

3D mask assaults, as verified on OULU-NPU, obtaining a 

6.2% HTER, which is a 2.5% enhancement over the nearest 

competitor. In this context, GNNs are essential for modeling 

the interactions between depth maps (artificial face outlines) 

and infrared reflectance anomalies, hence mitigating the 

misleading realism of synthetic masks. This result highlights 

the shortcomings of previous RGB-focused methods, which 

find it challenging to differentiate 3D masks from authentic 

faces because of their superior texturing.  

 
Figure 5. illustrates a comprehensive performance 

comparison between the proposed framework and 

state-of-the-art methods on the CASIA-SURF, 

Replay-Attack, and OULU-NPU datasets. 
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CONCLUSION AND FUTURE DIRECTION 

This paper introduces a comprehensive framework for face 

anti-spoofing that combines Graph Neural Networks 

(GNNs), Transformer topologies, and Reinforcement 

Learning (RL) to overcome the shortcomings of static data 

fusion and independent modality analysis. The framework 

attains state-of-the-art performance across three benchmark 

datasets by utilizing GNNs to model cross-modal 

relationships (e.g., linking depth irregularities with infrared 

anomalies), employing Transformers to capture global 

contextual dependencies (e.g., unnatural facial dynamics in 

video replays), and applying RL to dynamically optimize 

fusion strategies. On CASIA-SURF, Replay-Attack, and 

OULU-NPU, the technique decreases Half Total Error Rates 

(HTER) to 6.9%, 9.8%, and 6.2%, respectively, surpassing 

current methodologies by an average of 3.2%. Ablation tests 

confirm the essential function of GNNs, since their removal 

results in a 1.8% increase in HTER, but RL guarantees 

adaptation, preserving functioning despite a 0.6% decline in 

performance. The balanced error rates (APCER: 3.9%, 

BPCER: 3.8%, ACER: 3.9%) on CASIA-SURF further 

validate its efficacy in differentiating advanced assaults (e.g., 

3D masks) from authentic users. These findings underscore 

the framework's capacity to improve security in practical 

applications, including banking, border control, and mobile 

authentication. Future study will investigate the 

incorporation of explainable AI (XAI) methodologies to 

improve model transparency and reliability in anti-spoofing 

determinations, in accordance with frameworks such as [36]. 

Furthermore, blockchain-based risk assessment systems, 

might ensure the security of multi-modal data exchange and 

authentication records. Ultimately, modifications of 

federated learning may enhance cross-device generalization 

while safeguarding user privacy. 
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